Please wait a minute...
Clinical and Experimental Obstetrics & Gynecology  2020, Vol. 47 Issue (5): 645-652    DOI: 10.31083/j.ceog.2020.05.2212
Original Research Previous articles | Next articles
Impact of clinical pharmacist intervention on blood glucose control and perinatal outcomes in gestational diabetes mellitus through a diabetes management system
C. Ji1, L.J. Sun2, L.T. Li1, J. Ma1, W.H. Ge1, *(), X. Zhao3, *()
1Department of Pharmacy, Affiliated Drum Tower Hospital, Medical School of Nanjing University, No.321 Zhongshan Road, Nanjing, P.R. China
2Department of Endocrinology, Sir Run Run Hospital, Nanjing Medical University, No.109 Longmian Road, Nanjing, P.R. China
3The Pharmaceutical college of Inner Mongolia medical university, No.5 XinHua Street, Hohhot, P.R. China
Download:  PDF(1003KB)  ( 116 ) Full text   ( 11 )
Export:  BibTeX | EndNote (RIS)      
Abstract  

Background: Very few studies have assessed the role of a clinical pharmacist in women with gestational diabetes mellitus (GDM). To improve pharmaceutical care, we explored a method to improve the control of blood glucose and perinatal outcomes in females with GDM through the application of a diabetes management system. Methods: A randomized controlled trial was conducted from October 2017 to October 2018 for 200 outpatients with GDM. In the study, a diabetes management system with pharmaceutical care was used for the intervention group. The clinical outcomes of all patients were recorded at the end of delivery. Results: From one sample of 200 patients, 169 finished the research. Compared with the control group, patients in the intervention group manifested greater reductions in fasting plasma glucose (5.22 ± 0.37 vs. 6.05 ± 1.06 mmol/L; P = 0.018), 2 h postprandial plasma glucose (6.66 ± 0.57 vs. 9.69 ± 1.58 mmol/L; P = 0.00), and glycated hemoglobin A1c corrected values (1.02 ± 0.12 vs. 1.16 ± 0.22; P = 0.023). Moreover, the rate of polyhydramnios was significantly lower in the intervention group than in the control group (0% vs. 10.59%; P = 0.003) as well as significantly fewer macrosomia in the intervention group (7.14% vs. 18.82%; P = 0.038). Conclusions: Using a diabetes management system, clinical pharmacists can improve the control of blood glucose and perinatal results in GDM females. With a diabetes management system, the comprehensive management of GDM is a new model for pharmaceutical care in the future.

Key words:  Clinical pharmacist      Diabetes management system      Gestational diabetes mellitus      Blood glucose control      Perinatal outcome     
Submitted:  06 July 2020      Accepted:  31 August 2020      Published:  15 October 2020     
Fund: 2018YX010/Nanjing Pharmaceutical Association, Changzhou Four Hospital
*Corresponding Author(s):  W.H. Ge,X. Zhao     E-mail:  6221230@sina.com;amy-zhaoxue@126.com

Cite this article: 

C. Ji, L.J. Sun, L.T. Li, J. Ma, W.H. Ge, X. Zhao. Impact of clinical pharmacist intervention on blood glucose control and perinatal outcomes in gestational diabetes mellitus through a diabetes management system. Clinical and Experimental Obstetrics & Gynecology, 2020, 47(5): 645-652.

URL: 

https://ceog.imrpress.com/EN/10.31083/j.ceog.2020.05.2212     OR     https://ceog.imrpress.com/EN/Y2020/V47/I5/645

Figure1.  — (a) Diabetes management system. The DMS was divided into seven main module functions, specifically for system login, newly diagnosed information, inspection information, evaluation system, follow-up system, data management and retrieval statistics. (b) Flowchart of study patients. Total up to 200 pregnant women were enlisted and randomized, and 169 (85 in the control group and 84 in the treatment group) finished this research and were covered in the comparative analysis.

Table 1  — Baseline characteristics.
Variable Control(n = 85) Intervention (n = 84) P value
Age, yrs 29.98 ± 3.81 30.05 ± 3.49 0.883
Gravidity 1.92 ± 0.98 1.83 ± 0.83 0.548
Parity 0.34 ± 0.57 0.24 ± 0.43 0.185
BMI, kg/m2 23.34 ± 4.34 23.54 ± 3.95 0.752
HbA1c corrected value 1.01 ± 0.18 1.02 ± 0.16 0.893
SBP 121.18 ± 11.98 120.33 ± 12.27 0.652
DBP 73.48 ± 10.41 74.21 ± 10.64 0.652
Table 2  — Changes in outcome parameters at the start and end of the study in control and intervention groups.
Outcome Intervention (n = 84) Control (n = 85) p value between groups
Baseline Final p value Baseline Final p value
FPG (mmol/L) 6.12 ± 1.04 5.22 ± 0.37 0.02a 6.26 ± 1.26 6.05 ± 1.06 0.241 0.018a
2h PPG (mmol/L) 10.15 ± 1.89 6.66 ± 0.57 0.00a 10.34 ± 2.23 9.69 ± 1.58 0.03a 0.00a
HbA1c corrected 1.02 ± 0.16 1.02 ± 0.12 0.932 1.01 ± 0.18 1.16 ± 0.22 0.02a 0.023a
SBP (mmHg) 120.33 ± 12.27 134.21 ± 10.75 0.034a 121.18 ± 11.98 135.57 ± 13.89 0.036a 0.674
DBP (mmHg) 74.21 ± 10.64 93.86 ± 10.04 0.025a 73.48 ± 10.41 95.67 ± 11.23 0.026a 0.552
Table 3  — Changes in blood lipid levels in control and intervention groups.
Outcome Intervention (n = 84) Control (n = 85) P value
TC (mmol/L) 5.38 ± 1.16 5.62 ± 1.42 0.023a
TG (mmol/L) 3.30 ± 2.37 3.86 ± 2.99 0.018a
LDL-C (mmol/L) 2.28 ± 0.71 2.45 ± 0.95 0.196
HDL-C (mmol/L) 1.72 ± 0.36 1.55 ± 0.44 0.01a
Table 4  — Changes in fetal abdominal circumference in the B ultrasound.
Normal Above tde range Below tde range
Control(n = 85) 56 (65.88%) 28 (32.94%) 1 (1.18%)
Intervention(n = 84) 76 (90.48%) 6 (7.14%) 2 (2.38%)
P value < 0.01a < 0.01a
Figure 2.  — Mean change in HbA1c values during study duration. Mean change in HbA1c values were dramatically higher in the control group than in the intervention group. * Shows statistical significance.

Table 5  — Clinical outcomes among the infants and their mothers in control and intervention groups.
Outcome Intervention
(n = 84)
Control
(n = 85)
P value
Women
Gestational weight gain1 0.77 ± 0.39 0.94 ± 0.48 0.015a
Gestational weight gain2 1.18 ± 0.64 1.45 ± 0.87 0.021a
Premature delivery 1/84 (1.19%) 3/85 (3.53%) 0.076
Gestational age at delivery (weeks) 38.46 ± 1.77 37.83 ± 2.11 0.1
Cesarean delivery 42/84 (50%) 55/85 (64.7%) 0.054
Polyhydramnios 0/84 (0%) 9/85 (10.59%) 0.003a
Infants
Fetal malformation 6/84 (7.14%) 5/85 (5.88%) 0.766
Macrosomia 6/84 (7.14%) 16/85 (18.82%) 0.038a
Intrauterine fetal death 0/84 (0%) 2/85 (2.35%) 0.497
[1] Metzger B.E., Coustan D.R.: “Summary and recommendations of the Fourt International Workshop-Conference on Gestational Diabetes Mellitus”. Diabetes Care. 1998, 21, 161-167.
[2] Zhang F., Dong L., Zhang C.P., Li B., Wen J., Gao W., et al.: “Increasing prevalence of gestational diabetes mellitus in Chinese women from 1999 to 2008”. Diabet. Med., 2011, 28, 652-657.
doi: 10.1111/j.1464-5491.2010.03205.x pmid: 21569085
[3] Pridjian G., Benjamin, T.D.: “Update on gestational diabetes”. Obstet. Gyn. Clin. N. Am., 2010, 37, 255-267.
doi: 10.1016/j.ogc.2010.02.017
[4] Kim C., Newton K.M., Knopp R.H.: “Gestational diabetes and the incidence of type 2 diabetes: A systematic review”. Diabetes Care, 2002, 25, 1862-1868.
doi: 10.2337/diacare.25.10.1862 pmid: 12351492
[5] Barquiel B., Herranz L., Hillman N., Burgos M.Á., Grande C., Tukia K.M., et al.: “HbA1c and gestational weight gain are factors that influence neonatal outcome in mothers with gestational diabetes”. J. Women Health (Larchmt), 2016, 25, 579-585.
doi: 10.1089/jwh.2015.5432
[6] Rayanagoudar G., Hashi A.A., Zamora J., Khan K.S., Hitman G.A., Thangaratinam S., et al.: “Quantification of the type 2 diabetes risk in women with gestational diabetes: a systematic review and meta-analysis of 95,750 women”. Diabetologia, 2016, 59, 1403-1411.
doi: 10.1007/s00125-016-3927-2 pmid: 27073002
[7] Crowther C.A., Hiller J.E., Moss J.R., McPhee A.J., Jeffries W.S., Robinson J.S., et al: “Effect of treatment of gestational diabetes mellitus on pregnancy outcomes”. N. Engl. J. Med., 2005, 352, 2477-2486.
doi: 10.1056/NEJMoa042973 pmid: 15951574
[8] Landon M.B., Spong C.Y., Thom E., Carpenter M.W., Ramin S.M., Casey B., et al.: “A multicenter, randomized trial of treatment for mild gestational diabetes”. N. Engl. J. Med., 2009, 361, 1339-1348.
doi: 10.1056/NEJMoa0902430 pmid: 19797280
[9] NCC-WCH.: “Diabetes in Pregnancy: management of diabetes and Its Complications from Preconception to the postnatal period”. 2008.
[10] Choudhry N.K., Isaac T., Lauffenburger J.C., Gopalakrishnan C., Lee M., Vachon A., et al.: “Effect of a remotely delivered tailored multicomponent approach to enhance medication taking for patients with hyperlipidemia, hypertension, and diabetes: the stic2it cluster randomized clinical trial”. JAMA Intern. Med., 2018, 178, 1182-1189.
doi: 10.1001/jamainternmed.2018.3189 pmid: 30083727
[11] Fazel M.T., Bagalagel A., Lee J.K., Martin J.R., Slack M.K.: “Impact of diabetes care by pharmacists as part of health care team in ambulatory settings: a systematic review and meta-analysis”. Ann. Pharmacother., 2017, 51, 890-907.
doi: 10.1177/1060028017711454 pmid: 28573873
[12] Emet T., Ustner I., Given S.G., Balık G., Ural Ü.M., Tekin Y.B., et al.: “Plasma lipids and lipoproteins during pregnancy and related pregnancy outcomes”. Arch. Gynecol. Obstet., 2013, 288, 49-55.
doi: 10.1007/s00404-013-2750-y
[13] Metzger B.E., Contreras M., Sacks D.A., Watson W., Dooley S.L., Foderaro M., et al.: “Hyperglycemia and adverse pregnancy outcomes”. N. Engl. J. Med., 2008, 358, 1991-2002.
doi: 10.1056/NEJMoa0707943 pmid: 18463375
[14] HAPO.: “The HAPO Study Cooperative Research Group Hyperglycemia and Adverse Pregnancy Outcome (HAPO) Study: associations with neonatal anthropometrics”. Diabetes, 2009, 58, 453-459.
doi: 10.2337/db08-1112 pmid: 19011170
[15] Sosenko I.R., Kitzmiller J.L., Loo S.W., Blix P., Rubenstein A.H., Gabbay K.H., et al.: “The infant of the diabetic mother: correlation of increased cord C-peptide levels with macrosomia and hypo- glycemia”. N Engl J. Med., 1979, 301, 859-862.
doi: 10.1056/NEJM197910183011603 pmid: 481527
[16] Ong K.K., Diderholm B., Salzano G., Wingate D., Hughes I.A., MacDougall J. et al.: “Pregnancy insulin, glucose, and BMI contribute to birth outcomes in nondiabetic mothers”. Diabetes Care, 2008, 31, 2193-2197.
doi: 10.2337/dc08-1111 pmid: 18697902
[17] Manderson J.G., Mullan B., Patterson C.C., Hadden D., Traub A., McCance D., et al.: “Cardiovascular and metabolic abnormalities in the offspring of diabetic pregnancy”. Diabetologia., 2002, 45, 991-996.
doi: 10.1007/s00125-002-0865-y pmid: 12136397
[18] Reece E.A., Homko C.J.: “Assessment and management of pregnancies complicated by pregestational and gestational diabetes mellitus”. J. Assoc. Acad. Minor. Phys., 1994, 5, 87-97.
pmid: 7949826
[19] De Veciana M., Morgan M.A., Major C.A.: “Blood glucose monitoring in gestational diabetes mellitus”. N. Engl. J. Med., 1996, 334, 599-602.
doi: 10.1056/NEJM199602293340913 pmid: 8569837
[20] Kilpatrick E.S., Rigby A.S., Atkin S.L.: “Variability in the relationship between mean plasma glucose and HbA1c: Implications for the assessment of glycemic control”. Clin. Chem., 2007, 53, 897-901.
doi: 10.1373/clinchem.2006.079756 pmid: 17384010
[21] Leipold H., Worda C., Ozbal A., Husslein P., Krampl E.: “First- trimester nuchal translucency screening in pregnant women who subsequently developed gestational diabetes”. J. Soc. Gynecol. Invest., 2005, 12, 529-532.
doi: 10.1016/j.jsgi.2005.05.003
[22] Balaji V., Madhuri B.S., Ashalatha S., Sheela S., Suresh S., Seshiah V., et al.: “A1c in gestational diabetes mellitus in Asian Indian women”. Diabetes Care, 2007, 30, 1865-1867.
doi: 10.2337/dc06-2329 pmid: 17416790
[23] Sapienza A.D., Francisco R.P., Trindade T.C., Zugaib M.: “Factors predicting the need for insulin therapy in patients with gestational diabetes mellitus”. Diabetes Res. Clin. Pract., 2010, 88, 81-86.
doi: 10.1016/j.diabres.2009.12.023 pmid: 20071050
[24] Bakiner O., Bozkirli E., Ozsahin K., Sariturk C., Ertorer E.: “Risk factors that can predict antenatal insulin need in gestational diabetes”. J. Clin. Med. Res., 2013, 5, 381-388.
doi: 10.4021/jocmr1515w pmid: 23976911
[25] China Adult Dyslipidemia Prevention Guide Committee.: “China adult dyslipidemia prevention guide”. Chin. J. Cardiol., 2007, 35, 390-420.
[26] Mankuta D., Lami-Suzin M., Elhayani A., Vinker S.: “Lipid profile in consecutive pregnancies”. Lipids Health Dis., 2010, 9, 58-62.
doi: 10.1186/1476-511X-9-58 pmid: 20525387
[27] Neboh E.E., Emeh J.K., Aniebue U.U., Ikekpeazu E.J., Maduka I.C., Ezeugwu F.O.: “Relationship between lipid and lipoprotein metabolism in trimesters of pregnancy in Nigerian women: Is pregnancy a risk factor?”. J. N. at SciBiol. Med., 2012, 3, 32-37.
[28] Santschi V., Chiolero A., Colosimo A.L., et al.: “Improving blood pressure control through pharmacist interventions: a meta‐analysis of randomized controlled trials”. J. Am. Heart. Assoc., 2014, 3, e000718.
doi: 10.1161/JAHA.113.000718 pmid: 24721801
[29] Reece E.A., Coustan D.R., Gabbe D.G.: “Obstetric complications in diabetic pregnancies”. Diabetes in Woman, 2004, 353-354.
[30] McMahon M.G., Ananth C.V., Liston R.W.: “Gestational diabetes mellitus. Risk factors, obstetric complications and infant outcomes”. J. Report. Med., 1998, 43, 327-378.
[31] Said A.S., Manji K.P.: “Risk factors and outcomes of fetal macrosomia in a tertiary centre in Tanzania: a case-control study”. BMC Pregnancy and Childbirth, 2016, 16, 243.
doi: 10.1186/s12884-016-1044-3 pmid: 27557930
[32] He X.J., Qin F.Y., Hu C.L., Zhu M., Tian C.Q., Li L., et al.: “Is gestational diabetes mellitus an independent risk factor for macrosomia: a meta-analysis?”. Arch. Gynecol. Obstet., 2015, 291, 729-735.
doi: 10.1007/s00404-014-3545-5 pmid: 25388922
[33] Fan Z.T., Yang H.X., Gao X.L., Lintu H., Sun W.J.: “Pregnancy outcome in gestational outcomes”. Int. J. Gynecol. Obstet., 2006, 94, 12-16.
doi: 10.1016/j.ijgo.2006.03.021
[34] Langer O.: “Fetal macrosomia: etiologic factor”. Clin Obstet Gynecol., 2000, 43, 283-297.
doi: 10.1097/00003081-200006000-00006 pmid: 10863626
[35] Combs C.A., Gunderson E., Kitzmiller J.L., Gavin L.A., Main E.K.: “Relationship of fetal macrosomia to maternal postparandial glucose control during pregnancy”. Diabetes Care, 1992, 15, 1251-1257.
doi: 10.2337/diacare.15.10.1251 pmid: 1425084
[1] S. Y. Jung, S. J. Chon, R. S. Lee, E. Y. Woo, J. S. Lee, S. Y. Kim. Difference in pregnancy outcomes between primiparous and multiparous women older than 40 years[J]. Clinical and Experimental Obstetrics & Gynecology, 2020, 47(2): 243-247.
[2] N. Al-Husban, O. Al-Kuran, M. Khadra, K. Fram. Thrombocytopenia in pregnancy; prevalence, causes and fetomaternal outcome[J]. Clinical and Experimental Obstetrics & Gynecology, 2020, 47(1): 21-26.
[3] Hongying Zhang, Qingling Wei, Jinlan Wei, Haiyang Pang, Wenxuan Wei, Yu Sun, Mengya He, Yanling Sun. Importance of diagnosis time on pregnancy outcomes in pregnant women with pre-gestational diabetes mellitus[J]. Clinical and Experimental Obstetrics & Gynecology, 2020, 47(1): 57-61.
[4] L. Yuanmei, Z. Qian, X. Fengsen, W. Yankui. Restricted gestational weight gain in overweight/obese women with gestational diabetes mellitus and pregnancy outcomes[J]. Clinical and Experimental Obstetrics & Gynecology, 2019, 46(5): 763-769.
[5] F. Thekrallah, A. Alnadi, A. Almajalii, N. Muhaidat, A. Al-qatawneh, E. F. Badran. Obstetrics and perinatal outcome of grand multiparity in Jordan: a case-control study[J]. Clinical and Experimental Obstetrics & Gynecology, 2019, 46(2): 250-257.
[6] Y. Huo, S.-X. Liu, L. Li, J. Feng, H.-Y. Li, G.-Y. Song. Circulating vaspin and IL-6 concentrations in second trimester pregnancy with gestational diabetes[J]. Clinical and Experimental Obstetrics & Gynecology, 2019, 46(2): 211-215.
[7] S. Obata, S. Aoki, K. Sakamaki, K. Seki, F. Hirahara. Perinatal outcome of prolonged preterm premature rupture of membranes near the limit of fetal viability[J]. Clinical and Experimental Obstetrics & Gynecology, 2019, 46(1): 16-20.
[8] J. Agah, F. Roodsarabi, A. Manzuri, M. Amirpour, A. Hosseinzadeh. Prevalence and associated risk factors of gestational diabetes mellitus in a tertiary hospital in Iran[J]. Clinical and Experimental Obstetrics & Gynecology, 2019, 46(1): 85-89.
[9] M.S. Beksac, N.K. Ertürk, A.T. Beksac, G. Örgül, H.T. Celik, M. Yurdakök, T. Yildirim, A. Dolgun. Primary glomerular diseases and pregnancy[J]. Clinical and Experimental Obstetrics & Gynecology, 2018, 45(5): 682-686.
[10] H. Bagci, R. Melekoglu, M.F. Gursu, A. Akyol, F. G. Bulmus. Associations between serum levels of adiponectin and resistin and metabolic parameters in pregnant women with gestational diabetes mellitus[J]. Clinical and Experimental Obstetrics & Gynecology, 2018, 45(4): 539-543.
[11] N. Peker, A. Demir, C. Aydın, A. Biler, S. Gundogan. Adolescent pregnancies and perinatal outcomes: a study at tertiary hospital at the eastern part of Turkey[J]. Clinical and Experimental Obstetrics & Gynecology, 2018, 45(3): 339-343.
[12] K. Roloff, A. Gray, V.J. Guillermo. Repeat cesarean delivery in the 39-week rule era: outcomes at a community based hospital[J]. Clinical and Experimental Obstetrics & Gynecology, 2018, 45(3): 391-395.
[13] Y. Yang, B.R. Luo, M. Hu, D.M. Zhao, W.J. Jing. Association of CD36 gene single nucleotide polymorphism with gestational diabetes mellitus in Chinese Han population[J]. Clinical and Experimental Obstetrics & Gynecology, 2018, 45(2): 266-271.
[14] A. Ferraiolo, C. Bordone, A. Ramone, P. Sala, F. Gorlero, C. Gustavino, R. Cordera. Universal versus risk factor screening for gestational diabetes mellitus[J]. Clinical and Experimental Obstetrics & Gynecology, 2018, 45(1): 53-57.
[15] E. Cakar, N. Tarhan, H.A. Taşan, D. Karcaaltincaba, M.B. Sentürk, Ç.A. Yayla, A.A. Ertekin. Maternal and neonatal outcomes of borderline hyperglycemia during pregnancy diagnosed with abnormal screening test[J]. Clinical and Experimental Obstetrics & Gynecology, 2017, 44(6): 882-887.
[1] Miao Xie, Geng Zhang, Wei Yin, Xin-Xin Hei, Tao Liu. Cognitive enhancing and antioxidant effects of tetrahydroxystilbene glucoside in Aβ1-42-induced neurodegeneration in mice[J]. Journal of Integrative Neuroscience, 2018, 17(3): 203 -210 .
[2] Andrey F. Iznak, Ekaterina V. Iznak, Tatiana P. Klyushnik, Georgy M. Kobel'kov, Elena V. Damjanovich, Igor V. Oleichik, Lilia I. Abramova. Neurobiological parameters in quantitative prediction of treatment outcome in schizophrenic patients[J]. Journal of Integrative Neuroscience, 2018, 17(3): 221 -228 .
[3] J. Meléndez-Gallardo, A. Eblen-Zajjur. Thermo-dependence of noxious mechanical heterotopic stimulation-dependent modulation of the spinal dorsal horn response to somatosensory stimulation[J]. Journal of Integrative Neuroscience, 2018, 17(3): 249 -256 .
[4] Gerardo Fernández, Nora P. Rotstein, Luis E. Politi, Liliana Castro, Osvaldo Agamennoni. Microsaccadic behavior when developing a complex dynamical activity[J]. Journal of Integrative Neuroscience, 2018, 17(3): 287 -290 .
[5] Alexander Fedotchev, Grigoriy Radchenko, Anna Zemlianaia. Music of the brain approach to health protection[J]. Journal of Integrative Neuroscience, 2018, 17(3): 291 -296 .
[6] Abolfazl Alipour, Sahar Seifzadeh, Hadi Aligholi, Mohammad Nami. QEEG-based neural correlates of decision making in a well-trained eight year-old chess player[J]. Journal of Integrative Neuroscience, 2018, 17(3): 297 -306 .
[7] Lei Guo, Hongyi Shi, Yunge Chen, Hongli Yu. Anti-interference ability of deep spiking neural network[J]. Journal of Integrative Neuroscience, 2018, 17(4): 307 -311 .
[8] Jing Wang, Xiangyi Kong, Lele Cong, Zhongxin Xu, Jianshi Du, Xianling Cong, Hongyan Sun, Yanan Xu, Qing Zhao. Associations between CD33 rs3865444 and ABCA7 rs3764650 polymorphisms and susceptibility to Alzheimer's disease[J]. Journal of Integrative Neuroscience, 2018, 17(4): 313 -321 .
[9] J.E. Lugo, S. Mejia-Romero, R. Doti, K. Ray, S.L. Kothari, G. S. Withers, J. Faubert. A simple dynamic model that accounts for regulation of neuronal polarity[J]. Journal of Integrative Neuroscience, 2018, 17(4): 323 -330 .
[10] Wang Yu, Zhang Na, Yan Fengxia, Gao Yanping. Magnetic resonance imaging study of gray matter in schizophrenia based on XGBoost[J]. Journal of Integrative Neuroscience, 2018, 17(4): 331 -336 .