Please wait a minute...
Clinical and Experimental Obstetrics & Gynecology  2020, Vol. 47 Issue (5): 789-791    DOI: 10.31083/j.ceog.2020.05.5371
Case Report Previous articles | Next articles
Prenatal diagnosis and molecular cytogenetic characterization of two hereditary chromosomal duplications with favorable outcomes
Y.J. Wu1, C.J. Yu2, W.H. Tian3, Z. Xu4, *()
1Department of Obstetrics, Huanggang Central Hospital, Huanggang, Hubei, P.R. China
2Department of Prenatal Diagnosis Center, Maternal and Child Health Hospital of Hubei Province, Wuhan, Hubei, P.R. China
3Department of Reproductive Medicine Centre, Hubei Enshi Tujia and Miao Autonomous Prefecture Central Hospital, Enshi, Hubei, P.R. China
4Department of Gynecology, Maternal and Child Health Hospital of Hubei Province, Wuhan, Hubei, P.R. China
Download:  PDF(3458KB)  ( 109 ) Full text   ( 10 )
Export:  BibTeX | EndNote (RIS)      
Abstract  

The objective of this study was to report two cases of hereditary chromosomal duplications with favorable outcomes. In both cases, conventional karyotyping showed a normal karyotype. However, chromosomal microarray analysis on uncultured amniocytes detected a 3.2 Mb duplication in the region of arr[hg19] 13q12.11q12.12(22,073,046-25,230,759)×3 in case 1 and a 3.1 Mb duplication in the region of arr[hg19] 6q12(65,423,142-68,550,465)×3 in case 2. In both cases, the chromosomal duplication was inherited from a mother who has no symptoms. Both cases resulted in phenotypically normal babies.

Key words:  Conventional karyotyping      Chromosomal microarray      Microduplication      Prenatal diagnosis      Copy number variation (CNV)     
Submitted:  05 September 2019      Accepted:  29 April 2020      Published:  15 October 2020     
*Corresponding Author(s):  Z. Xu     E-mail:  xuzhenzhen2020@163.com

Cite this article: 

Y.J. Wu, C.J. Yu, W.H. Tian, Z. Xu. Prenatal diagnosis and molecular cytogenetic characterization of two hereditary chromosomal duplications with favorable outcomes. Clinical and Experimental Obstetrics & Gynecology, 2020, 47(5): 789-791.

URL: 

https://ceog.imrpress.com/EN/10.31083/j.ceog.2020.05.5371     OR     https://ceog.imrpress.com/EN/Y2020/V47/I5/789

Figure 1.  — Chromosomal microarray analysis on uncultured amniocytes using the Affymetrix SNP 6.0 platform revealed a 3.2 Mb duplication on chromosome arr[hg19] 13q12.11q12.12(22,073,046-25,230,759)×3.

Figure 2.  — Chromosomal microarray analysis on uncultured amniocytes using the Affymetrix SNP 6.0 platform revealed a 3.1 Mb duplication on chromosome arr[hg19] 6q12(65,423,142-68,550,465)×3.

[1] Wieacker P., Steinhard J.: "The prenatal diagnosis of genetic diseases". Dtsch. Arztebl. Int., 2010, 107, 857-862.
doi: 10.3238/arztebl.2010.0857 pmid: 21173933
[2] Bornstein E., Lenchner E., Donnenfeld A., Barnhard Y., Seubert D., Divon M.Y.: "Advanced maternal age as a sole indication for genetic amniocentesis; risk-benefit analysis based on a large database reflecting the current common practice". J. Perinat. Med., 2009, 37, 99-102.
doi: 10.1515/JPM.2009.032 pmid: 18999912
[3] Deans Z.C., Allen S., Jenkins L., Khawaja F., Hastings R.J., Mann K., et al.: "Recommended practice for laboratory reporting of non-invasive prenatal testing of trisomies 13, 18 and 21: a consensus opinion". Prenat. Diagn., 2017, 37, 699-704.
doi: 10.1002/pd.5068 pmid: 28497584
[4] Gonzales P.R., Carroll A.J., Korf B.R.: "Overview of clinical cytogenetics". Curr. Protoc. Hum. Genet., 2016, 89, 8.1.1-8.1.13.
[5] Levy B., Wapner R.: "Prenatal diagnosis by chromosomal microarray analysis". Fertil. Steril., 2018, 109, 201-212.
doi: 10.1016/j.fertnstert.2018.01.005 pmid: 29447663
[6] Pathak T., Trebak M.: "Mitochondrial Ca(2+) signaling". Pharmacol. Ther., 2018, 192, 112-123.
doi: 10.1016/j.pharmthera.2018.07.001 pmid: 30036491
[7] Petrungaro C., Zimmermann K.M., Küttner V., Fischer M., Dengjel J., Bogeski I., et al.: "The Ca(2+)-dependent release of the Mia40-induced MICU1-MICU2 dimer from MCU regulates mitochondrial Ca(2+) uptake". Cell Metab., 2015, 22, 721-733.
doi: 10.1016/j.cmet.2015.08.019 pmid: 26387864
[8] Wu X.L., Gu M.M., Huang L., Liu X.S., Zhang H.X., Ding X.Y., et al.: "Multiple synostoses syndrome is due to a missense mutation in exon 2 of FGF9 gene". Am. J. Hum. Genet., 2009, 85, 53-63.
doi: 10.1016/j.ajhg.2009.06.007
[9] Fuchs O., Gorlanova O., Latzin P., Schmidt A., Schieck M., Toncheva A.A., et al.: "6q12 and 11p14 variants are associated with postnatal exhaled nitric oxide levels and respiratory symptoms". J. Allergy Clin. Immunol., 2017, 140, 1015-1023.
doi: 10.1016/j.jaci.2016.11.048 pmid: 28109725
[1] Thanakorn Heetchuay, Thotsapon Trakulmungkichkarn, Noel Pabalan, Nutthaphon Imsom-Somboon. Reference values of fetal atrioventricular time intervals derive from antegrade late diastolic arterial blood flow (ALDAF) from 14 to 40 weeks of gestation[J]. Clinical and Experimental Obstetrics & Gynecology, 2021, 48(4): 867-874.
[2] Saša Raičević, Duško Kljakić, Filip Vukmirović, Miloš Z. Milosavljević. A giant placental chorioangioma with a resultant live birth; a discussion of management options[J]. Clinical and Experimental Obstetrics & Gynecology, 2021, 48(2): 426-430.
[3] Suchaya Luewan, Pakorn Chaksuwat, Tip Pongsuvareeyakul, Theera Tongsong. Prenatal sonographic findings and management of placental mesenchymal dysplasia[J]. Clinical and Experimental Obstetrics & Gynecology, 2021, 48(2): 439-443.
[4] Sureyya Saridas Demir, Erkan Cağliyan, Sabahattin Altunyurt. Retrospective analysis of pregnancy terminations and indications in a tertiary center[J]. Clinical and Experimental Obstetrics & Gynecology, 2021, 48(1): 85-90.
[5] B.F. Zhou, C.X. Duan, D.L. Tang. Methylmalonic acidemia in prenatal diagnosis[J]. Clinical and Experimental Obstetrics & Gynecology, 2020, 47(4): 617-619.
[6] D. Lu, D. Cao, Q. Zhao, X. Chen. Prenatal diagnosis and genetic counseling of mosaicism for chromosome t (7; 14) with a favorable outcome[J]. Clinical and Experimental Obstetrics & Gynecology, 2020, 47(3): 427-428.
[7] W. B. Wang, Q. Wu, Y. Zhou, X. Zhong, Y. Ge, J. Zhang. A 10-year retrospective study on prenatal cytogenetic analyses[J]. Clinical and Experimental Obstetrics & Gynecology, 2020, 47(2): 248-252.
[8] Q.C. Wu, W.B. Wang, L. Sun, Y.S. Xu, X.J. Xie, X.M. Ma, Z.Y. Su. Mutation analysis of the fibroblast growth factor receptor 3 gene in fetuses with thanatophoric dysplasia, type I[J]. Clinical and Experimental Obstetrics & Gynecology, 2020, 47(1): 7-11.
[9] G. Szabó, J. Rigó Jr.. Prenatal ultrasound diagnosis of abdominal pregnancy of ovarian origin[J]. Clinical and Experimental Obstetrics & Gynecology, 2019, 46(6): 977-979.
[10] W. Homola, M. Zimmer. Safety of amniocentesis in normal pregnancies and pregnancies considered high-risk due to fetal genetic anomalies - an observational study[J]. Clinical and Experimental Obstetrics & Gynecology, 2019, 46(3): 403-407.
[11] D.Y. Ma, G. Liu, C.Y. Luo, A. Liu, J.J. Zhang, P. Hu, J. Cheng, Y.G. Wang, T. Jiang, J.F. Xu. A novel mutation in the mutations in the methyl-CpG-binding protein 2 (MECP2) gene in a Chinese patient with typical Rett syndrome and subsequent prenatal diagnosis[J]. Clinical and Experimental Obstetrics & Gynecology, 2018, 45(6): 924-929.
[12] S. G. Erzincan, N. C. Sayin, C. Inan, M. A. Yuce, F. G. Varol, S. Basaran. Cell-free DNA testing: is it reliable? A case report[J]. Clinical and Experimental Obstetrics & Gynecology, 2018, 45(6): 939-941.
[13] Bo Wang, Dan Lu, Zuliang Shi, Jian Ke, Qi Zhao, Hongjun Li. Prenatal diagnosis of a complex chromosomal rearrangement involving five chromosomes[J]. Clinical and Experimental Obstetrics & Gynecology, 2018, 45(5): 797-799.
[14] Sun Young Jung, Yong Teak Oh, Suk Young Kim. Predict pregnancy outcomes of prenatal megaureter by prenatal ultrasonography[J]. Clinical and Experimental Obstetrics & Gynecology, 2018, 45(4): 544-548.
[15] G. Capobianco, G. Virdis, C. Cherchi, A. Gulotta, P.L. Cherchi, S. Dessole. Diagnosis and management of fetal omphalocele: a case report[J]. Clinical and Experimental Obstetrics & Gynecology, 2018, 45(1): 129-131.
No Suggested Reading articles found!