Please wait a minute...
Clinical and Experimental Obstetrics & Gynecology  2020, Vol. 47 Issue (1): 47-52    DOI: 10.31083/j.ceog.2020.01.4987
Original Research Previous articles | Next articles
Effect of the methanol extract of the Lion’s Mane mushroom, Hericium erinaceus, on bone metabolism in ovariectomized rats
N. Morita1, H. Matsushita1, *(), A. Minami2, S. Shimizu1, R. Tachibana1, H. Kanazawa3, T. Suzuki2, K. Watanabe1, A. Wakatsuki1
1Department of Obstetrics and Gynecology, School of Medicine, Aichi Medical University, Nagakute, Japan
2Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
3Department of Functional Anatomy, School of Nursing, University of Shizuoka, Shizuoka, Japan
Download:  PDF(726KB)  ( 379 ) Full text   ( 21 )
Export:  BibTeX | EndNote (RIS)      
Abstract  

Purpose: Osteoporosis is a major health concern in postmenopausal women. The aim of the study was to investigate the effect of Hericium erinaceus (H. erinaceus), also known as the Lion’s Mane mushroom, consumption on bone metabolism in ovariectomized (Ovx) rats. Materials and Methods: Rats in the Baseline group were sacrificed immediately, whereas rats in the Sham group underwent sham surgery, and those in the Ovx and Ovx + HE groups underwent bilateral Ovx. A diet containing the methanol extract of H. erinaceus was given to the Ovx+HE group for 13 weeks. Results: There was no significant difference in the femoral bone mass between the Ovx and Ovx+HE groups. In the histomorphometric study of the proximal tibial metaphysis, the osteoblast surface, mineralizing surface, and fat cell number were lower in the Ovx+HE group than those in the Ovx group. Conclusion: The present findings suggest that H. erinaceus does not prevent but rather accelerates bone loss in Ovx rats.

Key words:  Adipocyte      Bone histomorphometry      Bone mineral density      Menopause      Mushroom      Rat     
Published:  15 February 2020     
*Corresponding Author(s):  H. Matsushita     E-mail:  hirosm@aichi-med-u.ac.jp

Cite this article: 

N. Morita, H. Matsushita, A. Minami, S. Shimizu, R. Tachibana, H. Kanazawa, T. Suzuki, K. Watanabe, A. Wakatsuki. Effect of the methanol extract of the Lion’s Mane mushroom, Hericium erinaceus, on bone metabolism in ovariectomized rats. Clinical and Experimental Obstetrics & Gynecology, 2020, 47(1): 47-52.

URL: 

https://ceog.imrpress.com/EN/10.31083/j.ceog.2020.01.4987     OR     https://ceog.imrpress.com/EN/Y2020/V47/I1/47

Figure 1.  — (A) Percent fat volume (Fa.V/Ma.V), (B) fat cell number (N.Fa/Ma.V, /mm2), and (C) unit fat volume (Fa.V/N.Fa, µm2) of the right femur measured at the proximal tibial metaphysis in female Wistar rats at the beginning of the study (Baseline) and in shamoperated (Sham) or ovariectomized rats fed the H. erinaceus diet (Ovx+HE) or control diet (Ovx). Data are expressed as the means ± standard error of the mean. aP < 0.01 compared with the Sham group, and bP < 0.01 compared with the Ovx group (one-way analysis of covariance with Tukey’s honest significant difference test).

Table 1  — Bone mineral content and bone mineral density of the whole femur as well as the proximal, middle, and distal third of the femur in female Wistar rats at the beginning of the study (Baseline) and in sham-operated (Sham) or ovariec-tomized rats fed the H. erinaceus diet (Ovx+HE) or control diet (Ovx).
Baseline (n = 6) Sham (n = 10) Ovx (n = 10) Ovx+HE (n = 10)
BMC, g
Whole 0.225 ± 0.004 0.284 ± 0.005 0.281 ± 0.008b 0.280 ± 0.004a
Proximal third 0.083 ± 0.002 0.108 ± 0.002 0.103 ± 0.003a 0.104 ± 0.002a
Middle third 0.050 ± 0.000 0.065 ± 0.002 0.070 ± 0.002 0.070 ± 0.000

BMD, g/cm2
Distal third 0.093 ± 0.002 0.113 ± 0.003 0.110 ± 0.003a 0.111 ± 0.002a
Whole 0.181 ± 0.002 0.202 ± 0.003 0.190 ± 0.002b 0.189 ± 0.002b
Proximal third 0.182 ± 0.002 0.206 ± 0.003 0.187 ± 0.002b 0.190 ± 0.001b
Middle third 0.149 ± 0.002 0.171 ± 0.002 0.171 ± 0.001 0.169 ± 0.002
Distal third 0.204 ± 0.002 0.219 ± 0.003 0.206 ± 0.003b 0.200 ± 0.004b
Table 2  — Structural and dynamic cancellous bone indices measured at the proximal tibial metaphysis in female Wistar rats at the beginning of the study (Baseline) and in sham-operated (Sham) or ovariectomized rats fed the H. erinaceus diet (Ovx+HE) or control diet (Ovx).
Baseline (n = 6) Sham (n = 10) Ovx (n = 10) Ovx+HE (n = 10)
Structural indices
Bone volume, %

21.7 ± 0.9

29.7 ± 1.7

8.0 ± 0.8b

10.3 ± 0. 8b
Trabecular thickness, µm 58.6 ± 1.8 69.7 ± 3.0 61.8 ± 1.4a 65.9 ± 2.9
Trabecular number, /mm 3.69 ± 0.09 4.25 ± 0.12 1.29 ± 0.10b 1.57 ± 0.11b
Osteoid surface, % 23.1 ± 2.1 18.5 ± 2.1 31.8 ± 2.3b 27.6 ± 2.0b
Osteoid volume, % 3.00 ± 0.34 2.11 ± 0.33 4.28 ± 0.49b 3.48 ± 0.46a
Osteoblast surface, % 3.47 ± 0.44 1.13 ± 0.25 3.15 ± 0.65b 1.97 ± 0.49a, d
Eroded surface, % 7.51 ± 1.02 3.32 ± 0.16 4.04 ± 0.35 4.17 ± 0.66
Osteoclast surface, % 4.64 ± 0.69 0.65 ± 0.11 1.29 ± 0.12 1.64 ± 0.48
Dynamic indices
Single-labeled surface, %

37.4 ± 3.5

25.2 ± 1.5

25.7 ± 0.9

22.3 ± 0.9
Double-labeled surface, % 19.3 ± 3.0 13.3 ± 1.3 21.6 ± 1.0b 19.0 ± 1.2a
Mineralizing surface, % 38.0 ± 2.1 26.0 ± 1.4 34.4 ± 1.2b 30.1 ± 1.3d
Mineral apposition rate, µm/day 2.05 ± 0.18 1.37 ± 0.03 1.40 ± 0.05 1.41 ± 0.05
Bone formation rate, mm3/mm2/year 0.290 ± 0.042 0.131 ± 0.009 0.177 ± 0.010 0.156 ± 0.009
Bone formation rate, %/year 1013 ± 153 382 ± 30 579 ± 44a 480 ± 37
[1] Sandhu S.K., Hampson G.: “The pathogenesis, diagnosis, investigation and management of osteoporosis”. J. Clin. Pathol., 2011, 64, 1042.
[2] Raisz L.G.: “Pathogenesis of osteoporosis: concepts, conflicts, prospects”. J. Clin. Invest., 2005, 115, 3318.
[3] O’Connor K.M.: “Evaluation and treatment of osteoporosis”. Med. Clin. North Am., 2016, 100, 807.
[4] Lobo R.A., Davis S.R., De Villiers T.J., Gompel A., Henderson V.W., Hodis H.N., et al.: “Prevention of diseases after menopause”. Climacteric, 2014, 17, 540.
[5] Heleno S.A., Stojkovic D., Barros L., Glamoclija J., Sokovic M., Martins A., et al.: “A comparative study of chemical composition, antioxidant and antimicrobial properties of Morchella esculenta(L.)Pers. from Portugal and Serbia”. Food Res. Int., 2013, 51, 236.
[6] Valverde M.E., Hernandez-Perez T., Paredes-Lopez O.: “Edible mushrooms: improving human health and promoting quality life”. Int. J. Microbiol., 2015, 2015, 376387.
[7] Mattila P., Suonpaa K., Piironen V.: “Functional properties of edible mushrooms”. Nutrition., 2000, 16, 694.
[8] Keegan R.J., Lu Z., Bogusz J.M., Williams J.E., Holick M.F.: “Photobiology of vitamin D in mushrooms and its bioavailability in humans”. Dermatoendocrinol., 2013, 5, 165.
[9] Kim S.W., Kim H.G., Lee B.E., Hwang H.H., Baek D.H., Ko S.Y.: “Effects of mushroom, Pleurotus eryngii, extracts on bone metabolism”. Clin. Nutr., 2006, 25, 166.
[10] Shimizu K., Yamanaka M., Gyokusen M., Kaneko S., Tsutsui M., Sato J., et al.: “Estrogen-like activity and prevention effect of bone loss in calcium deficient ovariectomized rats by the extract of Pleurotus eryngii”. Phytother Res., 2006, 20, 659.
[11] Saif A., Lindequist U Wende K.: “Stimulating effects of Grifola frondosa(Maitake) on human osteoblastic cell cultures”. Journal of Natural Medicines., 2007, 61, 231.
[12] Miyamoto I., Liu J., Shimizu K., Sato M., Kukita A., Kukita T., et al.: “Regulation of osteoclastogenesis by ganoderic acid DM isolated from Ganoderma lucidum”. Eur. J. Pharmacol., 2009, 602, 1.
[13] Chen S.Y., Yu H.T., Kao J.P., Yang C.C., Chiang S.S., Mishchuk D.O., et al.: “Consumption of vitamin D2 enhanced mushrooms is associ-ated with improved bone health”. J. Nutr. Biochem., 2015, 26, 696.
[14] Erjavec I., Brkljacic J., Vukicevic S., Jakopovic B., Jakopovich I.: “Mushroom Extracts Decrease Bone Resorption and Improve Bone Formation”. Int. J. Med. Mushrooms., 2016, 18, 559.
[15] Kim J., Lee H., Kang K.S., Chun K.H., Hwang G.S.: “Cordyceps militaris mushroom and cordycepin inhibit RANKL-induced osteoclast differentiation”. J. Med. Food., 2015, 18, 446.
[16] Kim I.H., Chung M.Y., Shin J.Y., Han D.: “Protective effects of black hoof medicinal mushroom from Korea, phellinus linteus(Higher Basidiomycetes), on osteoporosis in vitro and in vivo”. Int. J. Med. Mushrooms., 2016, 18, 39.
[17] He X., Wang X., Fang J., Chang Y., Ning N., Guo H., et al.: “Structures, biological activities, and industrial applications of the polysaccharides from Hericium erinaceus(Lion’s Mane)mushroom: A review”. Int. J. Biol. Macromol., 2017, 97, 228.
[18] Nagano M., Shimizu K., Kondo R., Hayashi C., Sato D., Kitagawa K. , et al.: “Reduction of depression and anxiety by 4 weeks Hericium erinaceus intake”. Biomed. Res., 2010, 31, 231.
[19] Hiraki E., Furuta S., Kuwahara R., Takemoto N., Nagata T., Akasaka T., et al.: “Anti-obesity activity of Yamabushitake (Hericium erinaceus) powder in ovariectomized mice , and its potentially active compounds”. J. Nat. Med., 2017, 71, 482.
[20] Muruganandan S., Govindarajan R., Sinal C.J.: “Bone Marrow Adipose Tissue and Skeletal Health”. Curr. Osteoporos. Rep., 2018, 16, 434.
[21] Kalu D.N.: “The ovariectomized rat model of postmenopausal bone loss”. Bone Miner., 1991, 15, 175.
[22] Dempster D.W., Compston J.E., Drezner M.K., Glorieux F.H., Kanis J.A., Malluche H., et al.: “Standardized nomenclature, symbols, and units for bone histomorphometry: a 2012 update of the report of the ASBMR Histomorphometry Nomenclature Committee”. J. Bone Miner. Res., 2013, 28, 2.
[23] Tamura N., Kurabayashi T., Nagata H., Matsushita H., Yahata T., Tanaka K.: “Effects of testosterone on cancellous bone, marrow adipocytes, and ovarian phenotype in a young female rat model of polycystic ovary syndrome”. Fertil. Steril., 2005, 84, 1277.
[24] Lane M.A., Black A., Handy A.M., Shapses S.A., Tilmont E.M., Kiefer T.L., et al.: “Energy restriction does not alter bone mineral metabolism or reproductive cycling and hormones in female rhesus monkeys”. J. Nutr., 2001, 131, 820.
[25] Mardon J., Trzeciakiewicz A., Habauzit V., Davicco M.J., Lebecque P., Mercier S., et al.: “Dietary protein supplementation increases peak bone mass acquisition in energy-restricted growing rats”. Pediatr. Res., 2009, 66, 513.
[26] Lerner U.H.: “Bone remodeling in post-menopausal osteoporosis”. J Dent Re., 2006, 85, 584.
[27] Clarke B.: “Normal bone anatomy and physiology”. Clin. J. Am. Soc. Nephrol., 2008, 3, S131.
[28] Hansen M.A., Overgaard K., Riis B.J., Christiansen C.: “Role of peak bone mass and bone loss in postmenopausal osteoporosis: 12 year study”. BMJ., 1991, 303, 961.
[29] Yaoita Y., Danbara K., Kikuchi M.: “Two new aromatic compounds from Hericium erinaceum(BULL.:FR.) PERS(1) ”. Chem. Pharm. Bull. (Tokyo), 2005, 53, 1202.
[30] Luo C., Chen Y.S.: “Optimization of extraction technology of Seenriched Hericium erinaceum polysaccharides by Box-Behnken statistical design and its inhibition against metal elements loss in skull”. Carbohydr. Polym., 2010, 82, 854.
[31] Li W., Lee S.H., Jang H.D., Ma J.Y., Kim Y.H.: “Antioxidant and Anti-Osteoporotic Activities of Aromatic Compounds and Sterols from Hericium erinaceum”. Molecules, 2017, 22.
[32] Li W., Zhou W., Song S.B., Shim S.H., Kim Y.H.: “Sterol fatty acid esters from the mushroom Hericium erinaceum and their PPAR transactivational effects”. J. Nat. Prod., 2014, 77, 2611.
[33] Kawai M., Sousa K.M., MacDougald O.A., Rosen C.J.: “The many facets of PPARgamma: novel insights for the ske leton”. Am. J. Physiol. Endocrinol. Metab.. 2010, 299, E3.
[34] Khan E., Abu-Amer Y.: “Activation of peroxisome proliferator-activated receptor-gamma inhibits differentiation of preosteoblasts”. J. Lab. Clin. Med., 2003, 142, 29.
[35] Soroceanu M.A., Miao D., Bai X.Y., Su H., Goltzman D., Karaplis A.C.: “Rosiglitazone impacts negatively on bone by promoting osteoblast/osteocyte apoptosis”. J. Endocrinol., 2004, 183, 203.
[36] Ali A.A., Weinstein R.S., Stewart S.A., Parfitt A.M., Manolagas S.C., Jilka R.L.: “Rosiglitazone causes bone loss in mice by suppressing osteoblast differentiation and bone formation”. Endocrinology, 2005, 146, 1226.
[37] Grey A., Bolland M., Gamble G., Wattie D., Horne A., Davidson J. , et al.: “The peroxisome proliferator-activated receptor-gamma agonist rosiglitazone decreases bone formation and bone mineral density in healthy postmenopausal women: a randomized, controlled trial”. J. Clin. Endocrinol. Metab., 2007, 92, 1305.
[38] Wabitsch M., Jensen P.B., Blum W.F., Christoffersen C.T., Englaro P., Heinze E. , et al.: “Insulin and cortisol promote leptin production in cultured human fat cells”. Diabetes, 1996, 45, 1435.
[39] Hiwatashi K., Kosaka Y., Suzuki N., Hata K., Mukaiyama T., Sakamoto K., et al.: “Yamabushitake mushroom (Hericium erinaceus) improved lipid metabolism in mice fed a high-fat diet”. Biosci. Biotechnol. Biochem., 2010, 74, 1447.
[40] Hardouin P., Pansini V., Cortet B.: “Bone marrow fat”. J.Bone Spine, 2014, 81, 313.
[1] Leen Van den Eeden, Greet Leysens,Dominique Mannaerts, Yves Jacquemyn. Air pollution: cardiovascular and other negative effects on pregnancy: a narrative review[J]. Clinical and Experimental Obstetrics & Gynecology, 2021, 48(5): 1010-1016.
[2] Athanasia Tsaroucha, Aliki Tympa Grigoriadou, Tania Moshovou, Kassiani Theodoraki, Aikaterini Melemeni. Efficacy of intrathecally administered fentanyl versus dexmedetomidine for cesarean section: a double blinded, randomized clinical trial[J]. Clinical and Experimental Obstetrics & Gynecology, 2021, 48(5): 1065-1070.
[3] Shan Zhou, Liang Xia, Liyuan Han. SFRP1 suppresses granulosa cell proliferation and migration through inhibiting JNK pathway[J]. Clinical and Experimental Obstetrics & Gynecology, 2021, 48(5): 1193-1199.
[4] Luca Roncati, Greta Gianotti, Elisa Ambrogi, Giovanna Attolini. COVID-19 in pregnancy[J]. Clinical and Experimental Obstetrics & Gynecology, 2021, 48(4): 778-780.
[5] Sonia Sánchez, Laura Baquedano, Nicolás Mendoza. Treatment of vulvar pain caused by atrophy: a systematic review of clinical studies[J]. Clinical and Experimental Obstetrics & Gynecology, 2021, 48(4): 800-805.
[6] Shu-Jun Chen, Xie-Xia Zheng, Hong-Xing Jin, Jian-Hua Chen, Ting-Feng He, Cui-E Chen. Can venous cord blood neutrophil to lymphocyte ratio and platelet to lymphocyte ratio predict early-onset sepsis in preterm infants?[J]. Clinical and Experimental Obstetrics & Gynecology, 2021, 48(4): 828-834.
[7] Yu Deng, Zhan-Hui Ou, Min-Na Yin, Pei-Ling Liang, Zhi-Heng Chen, Abraham Morse, Ling Sun. Age and anti-Műllerian hormone: prediction of cumulative pregnancy outcome in in vitro fertilization with diminished ovarian reserve[J]. Clinical and Experimental Obstetrics & Gynecology, 2021, 48(4): 835-841.
[8] Üzeyir Kalkan, Murat Yassa, Kadir Bakay, Şafak Hatırnaz. Mechanical bowel preparation prior to gynaecological laparoscopy enables better operative field visualization, lower pneumoperitoneum pressure and Trendelenburg angle during the surgery: a perspective that may add to patient safety[J]. Clinical and Experimental Obstetrics & Gynecology, 2021, 48(4): 842-850.
[9] Yoon Young Jeong, Eun Ji Lee, Eun Byeol Cho, Jung Min Ryu, Youn Seok Choi. The role of platelet-to-lymphocyte ratio and neutrophil-to-lymphocyte ratio as a supplemental tool for differential diagnosis of uterine myoma and sarcoma[J]. Clinical and Experimental Obstetrics & Gynecology, 2021, 48(4): 901-906.
[10] Eun Jeong Choi, Jung Yeol Han. Pregnancy outcomes after inadvertent exposure of anti-obesity drugs during pregnancy[J]. Clinical and Experimental Obstetrics & Gynecology, 2021, 48(3): 514-522.
[11] Eser Ağar, Gökhan Karakoç. Comparison of electrocautery and scalpel for blood loss and postoperative pain in Pfannenstiel incisions in recurrent cesarean sections: a randomized controlled trial[J]. Clinical and Experimental Obstetrics & Gynecology, 2021, 48(3): 534-539.
[12] Gonca Özten Dere, Esra Uyanik, Fatih Aktoz, Pınar Çalış, Sezcan Mümüşoğlu, Hakan Yarali, Gürkan Bozdağ. The effect of laparoscopic ovarian drilling on timing of menopause in patients with polycystic ovary syndrome: 29 years of follow-up data[J]. Clinical and Experimental Obstetrics & Gynecology, 2021, 48(3): 590-593.
[13] Keiko Nemoto Murofushi, Reiko Tanaka, Ayako Ohkawa, Haruko Numajiri, Toshiyuki Okumura, Hideyuki Sakurai. Outcomes and dose—volume parameters for computed tomography-based brachytherapy planning for vaginal recurrence of uterine cancer primarily treated with surgery[J]. Clinical and Experimental Obstetrics & Gynecology, 2021, 48(3): 601-606.
[14] Jerilee Mariam Khong Azhary, Aizura Syafinaz Adlan, Sivakumar S. Balakrishnan, Siti Rohayu Kamarul Baharain, Syeda Nureena Syed Jafer Hussain Zaidi, Nuguelis Razali, Mukhri Hamdan, Noor Azmi Mat Adenan, Siti Zawiah Omar. Intraperitoneal ropivacaine for post-operative pain following laparoscopic tubal ligation: a randomised double-blind placebo-controlled trial[J]. Clinical and Experimental Obstetrics & Gynecology, 2021, 48(3): 654-660.
[15] Xiu-feng Yang, Meng Tang, Li-li Liu, Xiao-qiang Wei. A diagnostic dilemma and surgical attention of a giant broad ligament leiomyoma with cystic degeneration: case report[J]. Clinical and Experimental Obstetrics & Gynecology, 2021, 48(3): 715-718.
No Suggested Reading articles found!