Please wait a minute...
Clinical and Experimental Obstetrics & Gynecology  2020, Vol. 47 Issue (5): 729-735    DOI: 10.31083/j.ceog.2020.05.5262
Original Research Previous articles | Next articles
Physical parameters affecting the distribution of X-ray dose during hysterosalpingography
L. Kasprzyk1, K. Chmaj-Wierzchowska2, *(), M.U. Jurczyk2
1Department of Electroradiology, University of Medical Sciences, St. Garbary 15, Poznan, Poland
2Department of Maternal and Child Health, University of Medical Sciences, St. Polna 33, Poznan, Poland
Download:  PDF(395KB)  ( 91 ) Full text   ( 12 )
Export:  BibTeX | EndNote (RIS)      
Abstract  

Objective: Hysterosalpingography (HSG)?is based on the administration of a shading agent to the uterine cavity and fallopian tubes using a Schulze apparatus. An X-ray beam (X) is then directed at the abdominal area of the patient and diagnostic images are obtained for evaluation. The radiation beam and its mode of administration have a decisive influence on the radiation dose to which the patient is exposed. The aim of this study was to determine the physical parameters of this exposure in such a way that the dose distribution during the HSG examination was the most beneficial for the patient. Materials and Methods: Measurements to evaluate the effect of exposure parameters on the quality of radiological images obtained during HSG in slim and obese patients were made in 216 repetitions of the standard HSG test. Additional research data was obtained from measurements made in the X-ray laboratory at the Clinical Hospital. Results: The comparison of all measurements made for experimental models simulating a slim and obese patient demonstrated that the dose distribution most advantageous for the patient is obtained for pulsations of an X-ray tube for PPS = 6, regardless of the thickness of the patient. Conclusions: The image quality and size of the radiation dose received during the HSG examination depends on the individual characteristics of the patient. During the measurements performed in order to compare the exposure conditions set by the automatic exposure control (AEC) system and the resulting dose, this study demonstrated that the dose distribution most advantageous for the patients is obtained for pulsations on an X-ray tube for PPS = 6, regardless of the thickness of the patient.

Key words:  Hysterosalpingography      DAP radiation dose      Exposure parameters     
Submitted:  19 May 2019      Accepted:  01 August 2019      Published:  15 October 2020     
*Corresponding Author(s):  K. Chmaj-Wierzchowska     E-mail:  karolinachmaj@poczta.onet.pl

Cite this article: 

L. Kasprzyk, K. Chmaj-Wierzchowska, M.U. Jurczyk. Physical parameters affecting the distribution of X-ray dose during hysterosalpingography. Clinical and Experimental Obstetrics & Gynecology, 2020, 47(5): 729-735.

URL: 

https://ceog.imrpress.com/EN/10.31083/j.ceog.2020.05.5262     OR     https://ceog.imrpress.com/EN/Y2020/V47/I5/729

Figure 1.  — Water phantom with a thickness of 13 cm with elements absorbing X-ray to a higher and lower degree than the surroundings.

Figure 2.  — Water phantom with a thickness of 26 cm with elements absorbing X-ray to a higher and lower degree than the surroundings.

Figure 3.  — Radiographic image from the monitor seen during phantom screening.

Table 1  — The size of DAP dose depending on pulsation value for the phantom simulating a slim patient (thickness of 13 cm).
PPS DAP [mGy*cm2]
1 744
3 857
6 967
12 1083
25 1299
Table 2  — The size of DAP dose depending on pulsation value for the phantom simulating an obese patient (thickness of 26 cm).
PPS DAP [mGy*cm2]
1 6737
3 6271
6 6510
12 7147
25 8275
Figure 4.  — Comparison of radiograms obtained for 13-cm thick phantom for various PPS values = 1, 3, and 6.

Figure 5.  — Comparison of radiograms obtained for 26-cm thick phantom for various PPS values = 6, 12, and 25.

Table 3  — Average DAP doses for the phantom with a thickness of 13 cm.
PPS Total averaged DAP dose [mGy*cm2] Averaged DAP dose given during a single X-ray
1 766 369
3 854 366
6 522 189
Table 4  — Average DAP doses for the phantom with a thickness of 26 cm.
PPS Total averaged DAP dose [mGy*cm2] Averaged DAP dose given during a single X-ray
6 4547 1987
12 7095 2888
25 8281 2903
[1] Madej M.: “Guidelines for physicians referring to imaging test”. National Center for Radiological Protection in Health Care, 2015, 236.
[2] Ledbetter K.A., Shetty M., Myers D.T.: “Hysterosalpin gography: an imaging Atlas with cross-sectional correlation”. Abdom. Imaging, 2015, 40, 1721.
doi: 10.1007/s00261-014-0284-9 pmid: 25389063
[3] Phillips C.H., Benson C.B., Ginsburg E.S., Frates M.C.: “Comparison of uterine and tubal pathology identified by transvaginal sonography, hysterosalpingography, and hysteroscopy in female patients with infertility”. Fertil. Res. Pract., 2015, 1, 20.
doi: 10.1186/s40738-015-0012-3 pmid: 28620525
[4] Chalazonitis A., Tzovara I., Laspas F., Porfyridis P., Ptohis N., Tsimitselis G.: “Hysterosalpingography: technique and applications”. Curr. Probl. Diagn. Radiol., 2009, 38, 199.
doi: 10.1067/j.cpradiol.2008.02.003
[5] Efstathopoulos E.P., Charalambatou P.P., Tsalafoutas I.A., Kelekis A.D., Antonakos I., Brountzos E., et al.: “Effective and ovarian dose in PA conventional and rotational 3D hysterosalpingography examinations”. Physica Medica, 2013, 29, 549.
doi: 10.1016/j.ejmp.2013.01.004 pmid: 23517667
[6] Harbron R.W.: “What do recent epidemiological studies tell us about the risk of cancer from radiation doses typical of diagnostic radiography?”. Radiography, 2016, 22, S41-S46.
doi: 10.1016/j.radi.2016.08.007
[7] Seeram E., Davidson R., Bushong S., Swan H.: “Radiation dose optimization research: Exposure technique approaches in CR imaging-A literature review”. Radiography, 2013, 19, 331.
doi: 10.1016/j.radi.2013.07.005
[8] Paech A., Schulz A.P., Hahlbrauck B., Kiene J., Wenzl M.E., Jürgens C.H.: “Physical evaluation of a new technique for X-ray dose reduction: Measurement of signal-to-noise ratio and modulation transfer function in an animal model”. Physica Medica, 2007, 23, 33.
doi: 10.1016/j.ejmp.2006.12.002 pmid: 17568541
[9] Uffmann M., Schaefer-Prokop C.: “Digital radiography: The balance between image quality and required radiation dose”. Eur. J. Radiol., 2009, 72, 202.
doi: 10.1016/j.ejrad.2009.05.060
[10] Easton S.: “Radiografia”. Podręcznik dla techników elektroradiologii; Rozdział 13. Wrocław: Elsevier Urban & Partner, 2011, 21.
[11] Pruszyński B.: “Diagnostyka obrazowa. Podstawy teoretyczne i metodyka badań. Warszawa: Wydawnictwo Lekarskie PZWL, 2000, 86.
[12] Miller D.L., Balter S., Wagner L.K., Cardella J.F., Clark T.W.I., Neithamer C.D., et al.: “Quality improvement guidelines for recording patient radiation dose in the medical record”. J. Vasc. Interv. Radiol., 2009, 20, 200.
[13] Tugwell J., Everton C., Kingma A., Oomkens D.M., Pereira G.A., Pimentinha D.B., et al.: “Increasing source to image distance for AP pelvis imaging-impact on radiation dose and image quality”. Radiography, 2014, 20, 351.
doi: 10.1016/j.radi.2014.05.012
[14] Shah A., Das P., Subkovas E., Buch A.N., Rees M., Bellamy C.: “Radiation dose during coronary angiogram: relation to body mass index”. Heart Lung Circ., 2015, 24, 21.
doi: 10.1016/j.hlc.2014.05.018 pmid: 25065542
[15] Nałęcz M.: “Biocybernetyka i Inżynieria Biomedyczna 2000. Tom 9. Fizyka medyczna”. Warszawa: Akademicka Oficyna Wydawnicza EXIT, 2002.
[16] Tonkopi E., Daniels C., Gale M.J., Schofield S.C., Sorhaindo V.A., VanLarkin J.L.: “Local diagnostic reference levels for typical radiographic procedures”. Can. Assoc. Radiol. J., 2012, 63, 237.
doi: 10.1016/j.carj.2011.02.004
[17] Davros W.J.: “Fluoroscopy: basic science, optimal use, and patient/operator protection”. Tech. Reg. Anesth. Pain Manag., 2007, 11, 44.
doi: 10.1053/j.trap.2007.02.005
[18] Lança L., Franco L., Ahmed A., Harderwijk M., Marti C., Nasir S., et al.: “10 kVp rule-An anthropomorphic pelvis phantom imaging study using a CR system: Impact on image quality and effective dose using AEC and manual mode”. Radiography, 2014, 20, 333.
doi: 10.1016/j.radi.2014.04.007
[19] Veldkamp W.J.H., Kroft L.J.M., Geleijns J.: “Dose and perceived image quality in chest radiography”. Eur. J. Radiol., 2009, 72, 209.
doi: 10.1016/j.ejrad.2009.05.039
[20] Reisã C., Gonçalves J., Klompmaker C., Bárbara A.R., Bloor C., Hegarty R., et al.: “Image quality and dose analysis for a PA chest X-ray: Comparison between AEC mode acquisition and manual mode using the 10 kVp ‘rule’”. Radiography, 2014, 20, 339.
doi: 10.1016/j.radi.2014.06.001
[21] Darcy S., Rainford L., Kelly B., Toomey R.: “Decision making and variation in radiation exposure factor selection by radiologic technologists”. J. Med. Imaging Radiat Sci., 2015, 46, 372.
doi: 10.1016/j.jmir.2015.09.003 pmid: 31052117
[22] Reiner B.I.: “The quality/safety medical index: a standardized method for concurrent optimization of radiation dose and image quality in medical imaging”. J. Digit. Imaging, 2014, 27, 687.
doi: 10.1007/s10278-014-9727-7 pmid: 25193788
[23] Kowski R.: “Interventional radiology in Poland: the most common problems”. Inżynier i Fizyk Medyczny, 2012, 2, 70. (In Polskie)
[1] G. Capobianco, S. Mantegna, M. Farina, O.E. Gallo, C. Pini, E. Tinacci, P.L. Cherchi, S. Dessole. Saline infusion sonography: technique, advantages and limits for the study of uterus and fallopian tubes. Review and care pathway[J]. Clinical and Experimental Obstetrics & Gynecology, 2019, 46(4): 531-538.
[2] E. Caglayan, E. Okyay, T. Bodur, C. Ertugrul, E. Koyun, M. Kovali, E. Dogan, B. Gulekli. Hysterosalpingography prior to the gonadotropin stimulated intrauterine insemination improves clinical pregnancy rates in women with unexplained infertility[J]. Clinical and Experimental Obstetrics & Gynecology, 2017, 44(1): 65-69.
[1] B. Soltész, J. Lukács, A. Penyige, R. Póka, B. Nagy. Determination of miR-193b rs30236 single nucleotide polymorphism in ovarian cancer patients[J]. European Journal of Gynaecological Oncology, 2019, 40(4): 547 -550 .
[2] Y. Li, C. Li, N. Li, L. Jiang, W. Yang, Y. Wang, B. Wu, C. Shi, Z. Zhu. RNAi silenced NUP88 gene suppresses growth and invasiveness of human breast cancer cell line MCF-7[J]. European Journal of Gynaecological Oncology, 2019, 40(4): 634 -639 .
[3] Wang Xiaoyin, Zhao Qingping, Yan Mei, Yi HongYing. Diagnosis and treatment of cervical ectopic decidua during pregnancy[J]. Clinical and Experimental Obstetrics & Gynecology, 2018, 45(3): 428 -432 .
[4] Sung Taek Park, Hye-yon Cho, Sung-ho Park. Clinical comparison of minimal invasive hysterectomy techniques: laparoscopic hysterectomy vs. vaginal hysterectomy[J]. Clinical and Experimental Obstetrics & Gynecology, 2018, 45(4): 503 -507 .
[5] E.S. Yılmaz, T. Sapmaz, H. Kazgan, S. Menziletoglu Yıldız, D. Kocamaz, N. Akpolat, E. Sapmaz. Examination of the effect of melatonin use before hysterosalpingography on ovarian follicle reserve in rats[J]. Clinical and Experimental Obstetrics & Gynecology, 2018, 45(4): 570 -574 .
[6] Tao Cui, Yiqi Zhao, Wenli Zhang, Qiang Yao. Uterine prolapse with complete placenta praevia and umbilical hernia in pregnancy: a case report[J]. Clinical and Experimental Obstetrics & Gynecology, 2018, 45(4): 602 -604 .
[7] B. Dullaert, S. Schroven, Y. Jacquemyn. The effect of maternal vitamin D status on pregnancy outcome and child health in the first year of life[J]. Clinical and Experimental Obstetrics & Gynecology, 2018, 45(5): 677 -681 .
[8] K. Lachowski, M. Lachowska, D. Paluszyńska, B. Królak-Olejnik. Two-headed twin in a triplet pregnancy after in vitro fertilization – A case report and review of the literature [J]. Clinical and Experimental Obstetrics & Gynecology, 2018, 45(5): 782 -786 .
[9] A.H. Kaya, E. Tekgunduz, S. Akpınar, G. Bozdağ, T.N. Yiğenoğlu, A. Merdin, S. Namdaroglu, O. Kayıkcı, F. Altuntaş. Assessment of ovarian reserve with anti-Mullerian hormone in women following allogeneic hematopoietic cell transplantation[J]. Clinical and Experimental Obstetrics & Gynecology, 2019, 46(1): 127 -130 .
[10] L.-S. Wang, X.-L. Zhao, X.-A. Cai, G.-F. Fu. Age specific reference intervals of serum anti-MÁllerian hormone concentration of 1,253 women with healthy females in infertility center[J]. Clinical and Experimental Obstetrics & Gynecology, 2019, 46(4): 526 -530 .