Please wait a minute...
Clinical and Experimental Obstetrics & Gynecology  2020, Vol. 47 Issue (5): 755-763    DOI: 10.31083/j.ceog.2020.05.4988
Original Research Previous articles | Next articles
Comparison of laparoscopic surgical skills acquired on a virtual reality simulator and a box trainer: an analysis for obstetrics-gynecology residents
M. Varras1, *(), C. Loukas2, N. Nikiteas2, V.K. Varra3, F.N. Varra4, E. Georgiou2
1Fifth Department of Obstetrics and Gynecology, ‘Elena Venizelou’ General Maternity Hospital, Athens, Greece
2Simulation Center, Medical Physics Laboratory, School of Medicine, National and Kapodistrian University of Athens, Greece
3Department of Pharmacy, University of Patras, Greece
4Department of Pharmacy, Frederick University, Nicosia, Cyprus
Download:  PDF(1943KB)  ( 81 ) Full text   ( 6 )
Export:  BibTeX | EndNote (RIS)      
Abstract  

Background/Aims: It is well known that laparoscopic surgery requires the demonstration of a different set of technical skills when compared to open surgery. Laparoscopic training using simulators has been shown to accelerate learning in an efficient and standardized manner. Significant research has been conducted for skills acquisition in abdominal surgery, but in the field of gynecologic laparoscopy the relevant studies are limited. The aim of this study was to compare the training efficacy of virtual reality (VR) simulators and box-trainers (BTs) for skills acquisition in gynecologic surgery, and also to study the transferability of these skills in the performance of more advanced gynecologic operations. Methods: Twenty residents in obstetrics-gynecology with minimal laparoscopic experience were randomized into two equal groups to be trained on either a VR simulator (Group-A) or a BT (Group-B). Group-A was trained on basic tasks (clipping, peg transfer, and cutting), whereas Group-B was trained on ovarian cystectomy and salpingotomy using custom training models. After training, the two groups were assessed on the performance of two laparoscopic gynecologic procedures on a VR simulator (salpingotomy and salpingectomy). Performance metrics included time, instrument pathlength, and various task-specific errors. Results: Both groups demonstrated significant performance improvement in all training tasks, for all but one of the metrics (p < 0.05). After training, both groups had improved performance in the laparoscopic operations using the VR simulator, but this trend was not statistically significant in any metric considered (p > 0.05). Similarly, the post-training performance between the two groups was not statistically different (p > 0.05). Conclusions: Basic skills training on either a VR simulator or BT results in equivalent but not statistically significant performance improvement with more advanced gynecologic laparoscopic tasks on a VR simulator.

Key words:  Virtual reality simulator      Box-trainer      Gynecologic surgical training      Ectopic pregnancy      Salpingotomy      Salpingectomy     
Submitted:  23 September 2018      Accepted:  04 February 2019      Published:  15 October 2020     
*Corresponding Author(s):  M. Varras     E-mail:  mnvarras@otenet.gr

Cite this article: 

M. Varras, C. Loukas, N. Nikiteas, V.K. Varra, F.N. Varra, E. Georgiou. Comparison of laparoscopic surgical skills acquired on a virtual reality simulator and a box trainer: an analysis for obstetrics-gynecology residents. Clinical and Experimental Obstetrics & Gynecology, 2020, 47(5): 755-763.

URL: 

https://ceog.imrpress.com/EN/10.31083/j.ceog.2020.05.4988     OR     https://ceog.imrpress.com/EN/Y2020/V47/I5/755

Figure 1.  — Various steps from the salpingotomy (top) and salpingectomy (bottom) procedures performed on the VR simulator.

Figure 2.  — The three VR training tasks performed by Group A.

Figure 3.  — Various steps from the two training tasks (top: cystectomy, bottom: salpingotomy), performed by Group B on the BT.

Table 1  — Group A, ‘Clipping’: Training results (mean ± standard deviation), and correlation coefficient w.r.t. to the number of repetitions performed (VR simulator). Bold numbers indicate significance.
First two repetitions Last two repetitions p-values Correlation coefficient p-values
Number of clips applied 4.60 ± 2.68 4.10 ± 0.45 0.42 -0.02 0.77
Number of clips dropped 0.85 ± 0.23 0.07 ± 0.26 0.01 -0.18 < 0.01
Total instrument pathlength (m) 2.45 ± 1.50 1.62 ± 0.64 0.04 -0.36 < 0.01
Completion time (s) 149 ± 65 89 ± 40 < 0.010 -0.46 < 0.01
Table 2  — Group A, ‘Peg transfer’: Training results (mean ± standard deviation), and correlation coefficient w.r.t. to the number of repetitions performed (VR simulator). Bold numbers indicate significance.
First two repetitions Last two repetitions p-values Correlation coefficient p-values
Number of pegs dropped 1.10 ± 0.85 0.42 ± 0.63 0.02 -0.22 < 0.01
Total instrument pathlength (m) 6.47 ± 1.36 4.41 ± 0.57 < 0.01 -0.27 < 0.01
Completion time (s) 184 ± 80 104 ± 30 < 0.01 -0.51 < 0.01
Table 3  — Group A, ‘Cutting’: Training results (mean ± standard deviation), and correlation coefficient w.r.t. to the number of repetitions performed (VR simulator). Bold numbers indicate significance.
First two repetitions Last two repetitions p-values Correlation coefficient p-values
Percentage cutting out of boundary area 0.70 ± 1.38 0.47 ± 0.67 0.04 -0.29 < 0.01
Number of unsuccessful cutting attempts 5.90 ± 6.67 1.80 ± 2.71 0.02 -0.19 0.01
Total instrument pathlength (m) 7.43 ± 2.12 4.25 ± 2.15 0.04 -0.33 < 0.01
Completion time (s) 294 ± 147 166 ± 67 < 0.01 -0.53 < 0.01
Table 4  — Group B, ‘Ovarian cystectomy’: Training results (mean ± standard deviation), and correlation coefficient w.r.t. to the number of repetitions performed (Box Trainer). Bold numbers indicate significance.
First two repetitions Last two repetitions p-values Correlation coefficient p-values
Minimal damage of the cystic wall (yes=1/no=2) 1.95 ± 0.22 1.60 ± 0.30 0.04 -0.40 < 0.01
Success for a 7-cm longitudinal
incision on the ovarian cortex (y=1/n=2)
1.45 ± 0.21 1.10 ± 0.27 0.04 -0.18 0.04
Maximum deviation from the labelled line (mm) 1.57 ± 0.95 1.50 ± 0.98 0.58 -0.14 0.10
Total instrument pathlength (m) 13.42 ± 7.22 9.66 ± 5.05 0.03 -0.22 0.01
Completion time (s) 480 ± 110 320 ± 136 0.02 -0.19 0.04
Table 5  — Group B, ‘Salpingotomy’: Training results (mean ± standard deviation), and correlation coefficient w.r.t. to the number of repetitions performed (Box Trainer). Bold numbers indicate significance.
First two repetitions Last two repetitions p-values Correlation coefficient p-values
Success of longitudinal
incision (y=1/n=2)
1.53 ± 0.51 1.26 ± 0.45 0.17 -0.24 0.03
Total instrument pathlength (a.u.) 10.98 ± 5.66 4.30 ± 2.11 < 0.01 -0.65 < 0.01
Completion time (s) 382 ± 183 136 ± 65 < 0.01 -0.66 < 0.01
Table 6  — Pre-training vs. post-training performance results (mean ± standard deviation), for each group, for the salpingotomy assessment task performed on the VR simulator.
Pre-training Post-training p-values
Group A
Time for cautery used (s) 38.51 ± 30.44 33.61 ± 32.17 0.91
Total blood loss (cc) 69.40 ± 31.06 60.64 ± 18.24 0.18
Incision length (cm) 2.42 ± 0.46 2.26 ± 0.67 0.35
Total instrument pathlength (m) 6.60 ± 2.85 6.57 ± 4.32 0.43
Completion time (s) 260 ± 141 222 ± 120 0.85
Group B
Time for cautery used (s) 50.24 ± 33.89 28.89 ± 19.60 0.74
Total blood loss (cc) 67.56 ± 28.12 62.45 ± 22.34 0.68
Incision length (cm) 2.68 ± 0.98 2.33 ± 0.52 0.63
Total instrument pathlength (m) 6.29 ± 2.13 7.64 ± 4.89 0.85
Completion time (s) 276 ± 114 252 ± 164 0.48
Table 7  — Pre-training vs. post-training performance results (mean ± standard deviation), for each group, for the salpingectomy assessment task performed on the VR simulator.
Pre-training Post-training p-values
Group A
Time for cautery used (s) 157.79 ± 90.65 119.66 ± 71.36 0.31
Total blood loss (cc) 585.27 ± 341.84 405.87 ± 210.23 0.17
Adhesions ripped (%) 2.84 ± 3.76 2.60 ± 1.65 0.85
Adhesions lysed (%) 97.40 ± 7.54 94.30 ± 18.02 0.62
Total instrument pathlength (m) 20.37 ± 8.09 19.75 ± 9.52 0.43
Completion time (s) 732 ± 292 650 ± 318 0.87
Group B
Time for cautery used (s) 131.81 ± 56.47 159.55 ± 88.46 0.41
Total blood loss (cc) 505.97 ± 279.15 398.05 ± 211.47 0.34
Adhesions ripped (%) 2.68 ± 0.98 2.33 ± 0.52 0.84
Adhesions lysed (%) 99.40 ± 0.97 99.80 ± 0.63 0.28
Total instrument pathlength (m) 20.33 ± 7.27 22.31 ± 9.72 0.61
Completion time (s) 810 ± 306 726 ± 277 0.53
[1] Halvorsen F.H., Elle O.J., Fosse E.: “Simulators in surgery”. Minim. Invasive Ther. Allied Technol., 2005, 14, 214-223.
doi: 10.1080/13645700500243869 pmid: 16754167
[2] Madan A.K., Frantzides C.T.: “Prospective, randomized controlled trial of laparoscopic trainers in laparoscopic skills acquisition”. Surg. Endosc., 2007, 21, 209-213.
doi: 10.1007/s00464-006-0149-6
[3] Hasson H.M., Kumari N.V., Eekhout J.: “Training simulator for developing laparoscopic skills”. JSLS, 2001, 5, 255-265.
pmid: 11548833
[4] Bridges M., Diamond D.L.: “The financial impact of teaching surgical residents in the operating room”. Am. J. Surg., 1999, 177, 28-32.
doi: 10.1016/s0002-9610(98)00289-x pmid: 10037304
[5] Yiannakopoulou E., Nikiteas N., Perrea D., Tsigris C.: “Virtual reality simulators and training in laparoscopic surgery”. Int. J. Surg., 2015, 13, 60-64.
doi: 10.1016/j.ijsu.2014.11.014 pmid: 25463761
[6] Madan A.K., Harper J.L., Taddeucci R.J., Tichansky D.S.: “Goal-directed laparoscopic training leads to better laparoscopic skill acquisition”. Surgery, 2008, 144, 345-350.
doi: 10.1016/j.surg.2008.03.016 pmid: 18656645
[7] Condous G., Alhamdan D., Bignardi T., Van Calster B., Van Huffel S., Timmerman D., et al.: “The value of laparoscopic skills courses”. Aust. NZ J. Obstet. Gynecol., 2009, 49, 312-315.
doi: 10.1111/ajo.2009.49.issue-3
[8] Hiemstra E., Kolkman W., van de Put M.A.J., Jansen F.W.: “Retention of basic laparoscopic skills after a structured training program”. Gynecol. Surg., 2009, 6, 229-235.
doi: 10.1007/s10397-008-0458-y
[9] Rosser J.C., Murayama M., Gabriel N.H.: “Minimally invasive surgical training solutions for the twenty-first century”. Surg. Clin. North Am., 2000, 80, 1607-1624.
doi: 10.1016/s0039-6109(05)70248-6 pmid: 11059723
[10] Torkington J., Smith S.G., Rees B., Darzi A.: “Skill transfer from virtual reality to a real laparoscopic task”. Surg. Endosc., 2001, 15, 1076-1079.
doi: 10.1007/s004640000233
[11] Torkington J., Smith S.G., Rees B., Darzi A.: “The role of the basic surgical skills course in the acquisition and retention of laparoscopic skill”. Surg. Endosc., 2001, 15, 1071-1075.
doi: 10.1007/s004640000183
[12] Hamilton E.C., Scott D.J., Fleming J.B., Rege R.V., Laycock R., Bergen P.C., et al.: “Comparison of video trainer and virtual reality training systems on acquisition of laparoscopic skills. Surg. Endosc., 2002, 16, 406-411.
doi: 10.1007/s00464-001-8149-z pmid: 11928017
[13] Munz Y., Kumar B.D., Moorthy K., Bann S., Darzi A.: “Laparoscopic virtual reality and box trainers is one superior to the other?”. Surg. Endosc., 2004, 18, 485-494.
doi: 10.1007/s00464-003-9043-7
[14] Gor M., McCloy R., Stone R., Smith A.: “Virtual reality laparoscopic simulator for assessment in gynaecology”. BJOG, 2003, 110, 181-187.
pmid: 12618163
[15] Aggarwal R., Tully A., Grantcharov T., Larsen C.R., Miskry T., Farthing A., et al.: “Virtual reality simulation training can improve technical skills during laparoscopic salpingectomy for ectopic pregnancy”. BJOG, 2006, 113, 1382-1387.
doi: 10.1111/j.1471-0528.2006.01148.x pmid: 17081183
[16] Larsen C.R., Grantcharov T., Aggarwal R., Tully A., Sørensen J.L., Dalsgaard T., et al.: “Objective assessment of gynecologic laparoscopic skills using the LapSimGyn virtual reality simulator”. Surg. Endosc., 2006, 20, 1460-1466.
doi: 10.1007/s00464-005-0745-x
[17] Schreuder H.W.R., van Hove P.D., Janse J.A., Verheijen R.R., Stassen L.P., Dankelman J.: “An ‘intermediate curriculum’ for advanced laparoscopic skills training with virtual reality simulation”. J. Minim. Invasive Gynecol., 2011, 18, 597-606.
doi: 10.1016/j.jmig.2011.05.017 pmid: 21783431
[18] Scott D.J., Bergen P.C., Rege R.V., Laycock R., Tesfay S.T., Valentine R.J., et al.: “Laparoscopic training on bench models.: “better and more cost effective than operating room experience?”. J. Am. Coll. Surg., 2000, 191, 272-283.
doi: 10.1016/s1072-7515(00)00339-2 pmid: 10989902
[19] Zheng B., Hur H.C., Johnson S., Swanström L.L.: “Validity of using fundamentals of laparoscopic surgery (FLS) program to assess laparoscopic competent for gynecologists”. Surg. Endosc., 2010, 24, 152-160.
doi: 10.1007/s00464-009-0539-7
[20] Tang B., Tait I., Ross G., Chien P.: “Development and use of a restructured animal tissue model for training in laparoscopic salpingostomy and salpingectomy”. J. Minim. Invasive Gynecol., 2011, 718, 85-791.
[21] Levine R.L., Kives S., Cathey G., Blinchevsky A., Acland R., Thompson C., et al.: “The use of lightly embalmed (fresh tissue) cadavers for resident laparoscopic training”. J. Minim. Invasive Gynecol., 2006, 13, 451-456.
doi: 10.1016/j.jmig.2006.06.011 pmid: 16962531
[22] Hoffman M.S., Ondrovic L.E., Wenham R.M., Apte S.M., Shames M.L., Zervos E.E., et al.: “Evaluation of the porcine model to teach various ancillary procedures to gynaecologic oncology fellows”. Am. J. Obstet. Gynecol., 2009, 201, 116.e1-3.
[23] Loukas C., Nikiteas N., Schizas D., Lahanas V., Georgiou E.: “A head-to-head comparison between virtual reality and physical reality simulation training for basic skills acquisition”. Surg. Endosc., 2012, 26, 2550-2558.
doi: 10.1007/s00464-012-2230-7 pmid: 22476832
[24] Iwata. N., Fujiwara. M., Kodera. Y., Tanaka. C., Ohashi. N., Nakayama. G., et al.: “Construct validity of the LapVR virtual-reality surgical simulator”. Surg. Endosc., 2011, 25, 423-428.
doi: 10.1007/s00464-010-1184-x
[25] Loukas C., Nikiteas N., Kanakis M., Georgiou E.: “Deconstructing laparoscopic competence in a virtual reality simulation environment”. Surgery, 2011, 149, 750-760.
doi: 10.1016/j.surg.2010.11.012
[26] Watson D.I., Baigrie R.J., Jamieson G.G.: “A learning curve for laparoscopic fundoplication. Definable, avoidable, or a waste of time?”. Ann. Surg., 1996, 224, 198-203.
doi: 10.1097/00000658-199608000-00013 pmid: 8757384
[27] MacFadyen B.V., Vecchio R., Ricardo A.E., Mathis C.R.: “Bile duct injury after laparoscopic cholecystectomy - The United States Experience”. Surg. Endosc., 1998, 12, 315-321.
doi: 10.1007/s004649900661 pmid: 9543520
[28] Eriksen J.R., Grantcharov T.: “Objective assessment of laparoscopic skills using a virtual reality stimulator”. Surg. Endosc., 2005, 19, 1216-1219.
doi: 10.1007/s00464-004-2154-y
[29] Loukas C., Nikiteas N., Kanakis M., Georgiou E.: “The contribution of simulation training in enhancing key components of laparoscopic competence”. Am. Surg., 2011, 77, 708-715.
pmid: 21679638
[30] Hassan I., Zielke A.: “Is the aptitude of manual skills enough for assessing the training effect of students using a laparoscopic simulator?”. Ger. Med. Sci., 2005, 3.
pmid: 19675718
[31] Mansour S., Din N., Ratnasingham K., Irukulla S., Vasilikostas G., McCluney A.L., et al.: “FLS simulator performance predicts intraoperative laparoscopic skill”. Surg. Endosc., 2007, 21, 1991-1995.
doi: 10.1007/s00464-007-9451-1
[32] Madan A.K., Harper J.L., Frantzides C.T., Tichansky D.S.: “Nonsurgical skills do not predict baseline scores in inanimate box or virtual-reality trainers”. Surg. Endosc., 2008, 22, 1686-1689.
doi: 10.1007/s00464-007-9691-0
[33] Grantcharov T.P., Bardram L., Funch-Jensen P., Rosenberg J.: “Impact of hand dominance, gender, and experience with computer games on performance in virtual reality laparoscopy”. Surg. Endosc., 2003, 17, 1082-1085.
doi: 10.1007/s00464-002-9176-0
[34] Lynch J., Aughwane P., Hammond T.M.: “Video games and surgical ability, a literature review”. J. Surg. Educ., 2010, 67, 184-189.
doi: 10.1016/j.jsurg.2010.02.010
[35] Varras M., Nikiteas N., Varra V.K., Varra F.N., Georgiou E., Loukas C.: “Role of laparoscopic simulators in the development and assessment of laparoscopic surgical skills in laparoscopic surgery and gynecology”. World Acad Sci. J., 2020, 2, 65-76.
[36] Papanikolaou I.G., Haidopoulos D., Paschopoulos M., Chatzipapas I., Loutradis D., Vlahos N.F.: “Changing the way we train surgeons in the 21th century: A narrative comparative review focused on box trainers and virtual reality simulators”. Eur. J. Obstet. Gynecol. Reprod. Biol., 2019, 235, 13-18.
doi: 10.1016/j.ejogrb.2019.01.016 pmid: 30772529
[37] Torricelli F.C.M., Barbosa J.A., Marchini G.S.: “Impact of laparoscopic surgery training laboratory on surgeon’s performance”. World J. Gastrointest. Surg., 2016, 8, 735-743.
doi: 10.4240/wjgs.v8.i11.735 pmid: 27933135
[1] A. Lavinia Cozlea, E. Előd Élthes, Á. Török, M. Emil Capîlna. Clinical presentation, risk factors and management of ectopic pregnancy: a case-control study[J]. Clinical and Experimental Obstetrics & Gynecology, 2019, 46(6): 914-919.
[2] G. Virdis, F. Dessole, A. Andrisani, A. Vitagliano, R. Cappadona, G. Capobianco, E. Cosmi, G. Ambrosini, S. Dessole. Cesarean scar pregnancy: a report of three cases and a critical review on the management[J]. Clinical and Experimental Obstetrics & Gynecology, 2019, 46(6): 982-985.
[3] Z. Liu, M. Wan, H. Zhu. Fallopian tube ectopic pregnancy with renal duct cyst[J]. Clinical and Experimental Obstetrics & Gynecology, 2019, 46(6): 986-987.
[4] W.D. Zou, Z.W. Liu, J. Zhang. Intramural pregnancy following transcervical resection of adhesion: a case and review literatures[J]. Clinical and Experimental Obstetrics & Gynecology, 2019, 46(6): 1017-1019.
[5] J.X. Ruan, Y. Chen, Y.Y. Wang, L. Yao, C.Y. He, H.N. Weng. Isolated torsion of bilateral fallopian tubes: a case report[J]. Clinical and Experimental Obstetrics & Gynecology, 2019, 46(5): 836-838.
[6] M. Meléndez Zalduegui, S. Iglesias Ferreiro, A. Rodríguez Vélez, ML. Monje Beltrán, EM. Vicedo Madrazo, RJ. Martínez Portillo, M. Llobet Roma, M. Marqueta Sánchez. Cesarean scar ectopic pregnancy, a life threatening condition: a case report[J]. Clinical and Experimental Obstetrics & Gynecology, 2019, 46(2): 313-316.
[7] A. Dobrosavljevic, B. Nikolic, A. Jurisisc, N. Zečević, R. Aničić, M. Jeftović. Diagnosis and treatment of cervical ectopic pregnancy - case report[J]. Clinical and Experimental Obstetrics & Gynecology, 2019, 46(1): 139-140.
[8] Jing Fu, Na Hu, Lin Qiao, Qiang Yao. Cornual pregnancy with placenta percreta and uterine rupture at 19 weeks' gestation[J]. Clinical and Experimental Obstetrics & Gynecology, 2019, 46(1): 141-142.
[9] H. Bakhsh. Misdiagnosis of spontaneous bilateral tubal pregnancy: a case report and review of literature[J]. Clinical and Experimental Obstetrics & Gynecology, 2019, 46(1): 168-170.
[10] Lieming Wen, Qichang Zhou, Shi Zeng. Gestational progression and blood supply assessment of a six-week primary hepatic pregnancy[J]. Clinical and Experimental Obstetrics & Gynecology, 2018, 45(4): 594-596.
[11] Munetoshi Akazawa, Yuzo Imachi, Kiyoshi Aiko, Kazushige Nakahara, Sachiko Onjo. Carcinoma of unknown primary site and ectopic pregnancy diagnosed at laparoscopic surgery: a rare coexistence[J]. Clinical and Experimental Obstetrics & Gynecology, 2018, 45(4): 626-628.
[12] J. Hudecová, A. Hudec, Z. Novotný, D. Slouka. Pregnancy in the scar after myomectomy[J]. Clinical and Experimental Obstetrics & Gynecology, 2018, 45(4): 632-635.
[13] A. Ciavattini, N. Clemente, S. Morini, M. Fichetti, G. Delli Carpini, R. Candelari. Conservative treatment of ectopic cervical pregnancy with uterine artery embolization and cervical curettage: a case report[J]. Clinical and Experimental Obstetrics & Gynecology, 2018, 45(3): 456-458.
[14] A. Jurisic, A. Dobrosavljevic, S. Dragojevic-Dikic, L.Tasic, V. Mihailovic. Spontaneous vital heterotopic pregnancy at 12 weeks' gestational age[J]. Clinical and Experimental Obstetrics & Gynecology, 2018, 45(3): 464-465.
[15] Lei Yan, Bing-Qian Zhang, Xin-Xin Xu, Zhen Xu, Ting Han, Xiu-Ling Fan, Zi-Jiang Chen. Pregnancy outcomes after fresh-D3 versus frozen-D5 embryo transfer in women with an ectopic pregnancy history: a retrospective cohort study[J]. Clinical and Experimental Obstetrics & Gynecology, 2018, 45(1): 58-62.
[1] Miao Xie, Geng Zhang, Wei Yin, Xin-Xin Hei, Tao Liu. Cognitive enhancing and antioxidant effects of tetrahydroxystilbene glucoside in Aβ1-42-induced neurodegeneration in mice[J]. Journal of Integrative Neuroscience, 2018, 17(3): 203 -210 .
[2] J. Meléndez-Gallardo, A. Eblen-Zajjur. Thermo-dependence of noxious mechanical heterotopic stimulation-dependent modulation of the spinal dorsal horn response to somatosensory stimulation[J]. Journal of Integrative Neuroscience, 2018, 17(3): 249 -256 .
[3] J.E. Lugo, S. Mejia-Romero, R. Doti, K. Ray, S.L. Kothari, G. S. Withers, J. Faubert. A simple dynamic model that accounts for regulation of neuronal polarity[J]. Journal of Integrative Neuroscience, 2018, 17(4): 323 -330 .
[4] Wang Yu, Zhang Na, Yan Fengxia, Gao Yanping. Magnetic resonance imaging study of gray matter in schizophrenia based on XGBoost[J]. Journal of Integrative Neuroscience, 2018, 17(4): 331 -336 .
[5] Esther Lázaro, Maitane Garca, Imanol Amayra, Juan-Francisco López-Paz, Oscar Martnez, Manuel Pérez, Sarah Berrocoso, Mohammad Al Rashaida, Paula Fernández, Alicia Rodrguez, Amaia Jometón, Begoña Ruz. Anxiety and depression in Chiari malformation[J]. Journal of Integrative Neuroscience, 2018, 17(4): 343 -348 .
[6] Matteo Fraschini, Margherita Lai, Luca Didaci. Comparison of functional connectivity metrics using an unsupervised approach: a source resting-state EEG study[J]. Journal of Integrative Neuroscience, 2018, 17(4): 393 -396 .
[7] Shinji Ijichi, Naomi Ijichi, Yukina Ijichi, Chikako Imamura, Hisami Sameshima, Yoichi Kawaike, Hirofumi Morioka. The origin of complex human diversity: Stochastic epistatic modules and the intrinsic compatibility between distributional robustness and phenotypic changeability[J]. Journal of Integrative Neuroscience, 2018, 17(1): 1 -10 .
[8] Lei Guo, Wei Zhang, Jialei Zhang. The effect of an exogenous alternating magnetic field on neural coding in deep spiking neural networks[J]. Journal of Integrative Neuroscience, 2018, 17(2): 97 -104 .
[9] Aaron Y. Kluger, Kristen M. Tecson, Clay M. Barbin, Andy Y. Lee, Edgar V. Lerma, Zachary P. Rosol, Janani Rangaswami, Norman E. Lepor, Michael E. Cobble, Peter A. McCullough. Cardiorenal Outcomes in the CANVAS, DECLARE-TIMI 58, and EMPA-REG OUTCOME Trials: A Systematic Review[J]. Reviews in Cardiovascular Medicine, 2018, 19(2): 41 -49 .
[10] Li-Bing Chen, Feng-Mei Qiu, Xiao-Ming Zhong, Cheng Hong, Zhen Huang. Promoting neurogenesis in hippocampal dentate gyrus of chronic unpredictable stress-induced depressive-like rats with paeoniflorin[J]. Journal of Integrative Neuroscience, 2019, 18(1): 43 -49 .