Please wait a minute...
Clinical and Experimental Obstetrics & Gynecology  2020, Vol. 47 Issue (4): 511-515    DOI: 10.31083/j.ceog.2020.04.5301
Original Research Previous articles | Next articles
Serum NT-proBNP levels as a marker for cardiopulmonary function in preeclampsia
H.M. Kim1, 2, Y.S. Choo2, W.J. Seong1, 2, *()
1Department of Obstetrics and Gynecology, Kyungpook National University Chilgok Hospital, Daegu, 41404, Republic of Korea
2Department of Obstetrics and Gynecology, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
Download:  PDF(247KB)  ( 185 ) Full text   ( 9 )
Export:  BibTeX | EndNote (RIS)      
Abstract  

Purpose: This study evaluated serum amino-terminal pro-B-type natriuretic peptide (NT-proBNP) levels and echocardiography to determine their efficacy as markers for predicting postpartum pulmonary edema in patients with severe preeclampsia. Methods: We evaluated the NT-proBNP levels and echocardiographic results of 124 preeclamptic women (gestation preeclampsia (GPE) group, n = 77; superimposed preeclampsia on underlying hypertension (SPE) group n = 47). Patients were also divided into postpartum pulmonary edema (PPE, n = 28) and non-pulmonary edema (NPE, n = 96) groups. NT-proBNP levels and echocardiographic parameters were compared between groups, and their correlations were also evaluated. Statistical analysis was carried out using variance analysis, and significance was set at p < 0.05. Results: The SPE group had significantly higher NT-proBNP levels than the GPE group. They were also more likely to have PPE, but this was not significant. Echocardiography showed no significant differences in the left ventricular (LV) ejection fraction (LVEF) of the two groups, but a mild LV diastolic dysfunction was noted in the SPE group. The PPE group had significantly higher serum NT-proBNP levels and lower LVEF than the NPE group. There were no significant differences in the echocardiographic parameters of diastolic cardiac dysfunction in the two groups. The serum NT-proBNP levels were significantly negatively correlated with LVEF. Conclusions: PPE in patients with severe preeclampsia was associated with impaired cardiac function, especially LV systolic dysfunction. Serum NT-proBNP levels and echocardiography may be useful predictive markers for postpartum pulmonary edema in women with severe preeclampsia.

Key words:  NT-proBNP      Preeclampsia      Echocardiography      Pulmonary edema      Cardiac function     
Submitted:  25 June 2019      Accepted:  04 September 2019      Published:  15 August 2020     
Fund: Biomedical Research Institute grant, Kyungpook National University Hospital (2019)
*Corresponding Author(s):  W.J. Seong     E-mail:  wjseong@knu.ac.kr

Cite this article: 

H.M. Kim, Y.S. Choo, W.J. Seong. Serum NT-proBNP levels as a marker for cardiopulmonary function in preeclampsia. Clinical and Experimental Obstetrics & Gynecology, 2020, 47(4): 511-515.

URL: 

https://ceog.imrpress.com/EN/10.31083/j.ceog.2020.04.5301     OR     https://ceog.imrpress.com/EN/Y2020/V47/I4/511

Table 1  — Comparison of baseline characteristics according to the presence of uHTN.
SPE GPE p value
Patients No. 47 77
Age (y) 33.7 ± 5.0 32.6 ± 4.2 0.169
BMI (kg/m2) 30.2 ± 6.4 27.5 ± 4.8 0.026
Nulliparity 25(53%) 42(55%) 0.883
Pulmonary edema 13(28%) 15(19%) 0.291
Gestational age
at delivery (days)
229.6 ± 32.1 234.8 ± 26.0 0.350
Birth weight (g) 1751.4 ± 839.8 1763.2 ± 662.6 0.937
SBP (mmHg) 160.4 ± 20.1 159.5 ± 19.9 0.809
DBP (mmHg) 100.7 ± 14.7 100.1 ± 14.8 0.822
Table 2  — NT-proBNP and echocardiographic parameters according to the presence of uHTN.
SPE GPE p value
NT-proBNP (pg/mL) 1781.8 ± 4278.7 546.3 ± 1223.1 0.022
LVEF(%) 56.7 ± 8.8 57.9 ± 5.6 0.346
LVEDV(mL) 94.5 ± 27.5 90.9 ± 23.0 0.449
LVESV(mL) 42.9 ± 21.7 38.5 ± 13.5 0.237
IVS (cm) 0.95 ± 0.14 0.89 ± 0.13 0.016
LVPW (cm) 1.00 ± 0.12 0.93 ± 0.11 0.001
MVDT (ms) 197.8 ± 48.4 178.9 ± 41.8 0.030
MV E/A 1.00 ± 0.26 1.20 ± 0.35 0.001
E/E’(m/sec) 11.6 ± 2.6 10.6 ± 2.8 0.066
Table 3  — Comparison of baseline characteristics according to the presence of PPE.
PPE NPE p value
Patients No. 28 96
Age (y) 32.1 ± 4.8 33.3 ± 4.4 0.214
BMI (kg/m2) 27.3 ± 4.2 28.8 ± 5.8 0.300
Nulliparity 19(68%) 48(50%) 0.095
uHTN 13(46%) 34(35%) 0.291
Gestational age
at delivery (days)
221.6 ± 31.6 235.9 ± 26.9 0.020
Birth weight (g) 1411.3 ± 636.4 1853.3 ± 733.0 0.008
SBP (mmHg) 162.0 ± 16.8 159.3 ± 20.7 0.521
DBP (mmHg) 99.8 ± 13.0 100.5 ± 15.2 0.824
Table 4  — NT-proBNP and echocardiographic parameters according to the presence of PPE.
PPE NPE p value
NT-proBNP (pg/mL) 3473.4 ± 5119.7 305.1 ± 958.2 0.004
LVEF(%) 52.8 ± 9.1 58.8 ± 5.5 0.001
LVEDV(mL) 101.1 ± 27.9 89.7 ± 23.2 0.033
LVESV(mL) 49.6 ± 24.8 37.3 ± 12.9 0.019
IVS (cm) 0.95 ± 0.14 0.90 ± 0.13 0.102
LVPW (cm) 0.98 ± 0.13 0.95 ± 0.11 0.240
MVDT (ms) 175.7 ± 38.3 188.8 ± 46.6 0.202
MV E/A 1.16 ± 0.32 1.11 ± 0.33 0.555
E/E’(m/sec) 11.8 ± 2.1 10.8 ± 2.9 0.109
Figure 1.  — ROC curve for the prediction of PPE.

Table 5  — Correlation between NT-proBNP levels and echocardiographic parameters.
LVEF LVPWT LVEDV LVESV
NT-proBNP -.222* .200* .236* .303*
[1] Bauer S.T., Cleary K.L.: “Cardiopulmonary complications of pre-eclampsia”. Semin. Perinatol., 2009, 33, 158-165.
doi: 10.1053/j.semperi.2009.02.008
[2] Zlatnik M.G.: “Pulmonary edema: etiology and treatment”. Semin. Perinatol., 1997, 21, 298-306.
doi: 10.1016/s0146-0005(97)80072-9 pmid: 9298718
[3] Hall C.: “Essential biochemistry and physiology of (NT-pro) BNP”. Eur. J. Heart Fail., 2004, 6, 257-260.
doi: 10.1016/j.ejheart.2003.12.015 pmid: 14987573
[4] Desai D.K., Moodley J., Naidoo D.P., Bhorat I.: “Cardiac abnormalities in pulmonary oedema associated with hypertensive crises in pregnancy”. Br. J. Obstet. Gynaecol., 1996, 103, 523-528.
pmid: 8645643
[5] National High Blood Pressure Education Program Working Group on High Blood Pressure in Pregnancy.: “Report of the National High Blood Pressure Education Program Working Group on High Blood Pressure in Pregnancy”. Am. J. Obstet. Gynecol., 2000, 183, S1-S22.
pmid: 10920346
[6] Choi H.S., Choi H., Han S., Kim H.S., Lee C., Kim Y.Y., et al.: “Pulmonary edema during pregnancy: unilateral presentation is not rare”. Circ. J., 2002, 66, 623-626.
doi: 10.1253/circj.66.623 pmid: 12135127
[7] Magee L.A., Pels A., Helewa M., Rey E., von Dadelszen P.: “Canadian Hypertensive Disorders of Pregnancy Working G. Diagnosis, evaluation, and management of the hypertensive disorders of pregnancy”. Pregnancy Hypertens., 2014, 4, 105-145.
doi: 10.1016/j.preghy.2014.01.003 pmid: 26104418
[8] Dennis A.T.: “Transthoracic echocardiography in women with preeclampsia”. Curr. Opin. Anaesthesiol., 2015, 28, 254-260.
doi: 10.1097/ACO.0000000000000182 pmid: 25812006
[9] Melchiorre K., Sutherland G.R., Baltabaeva A., Liberati M., Thilaganathan B.: “Maternal cardiac dysfunction and remodeling in women with preeclampsia at term”. Hypertension, 2011, 57, 85-93.
doi: 10.1161/HYPERTENSIONAHA.110.162321
[10] Rafik H.R., Larsson A., Pernow J., Bremme K., Eriksson M.J.: “Assessment of left ventricular structure and function in preeclampsia by echocardiography and cardiovascular biomarkers”. J. Hypertens., 2009, 27, 2257-2264.
doi: 10.1097/HJH.0b013e3283300541 pmid: 19809366
[11] Simmons L.A., Gillin A.G., Jeremy R.W.: “Structural and functional changes in left ventricle during normotensive and preeclamptic pregnancy”. Am. J. Physiol. Heart Circ. Physiol., 2002, 283, H1627-H1633.
doi: 10.1152/ajpheart.00966.2001 pmid: 12234817
[12] Cong J., Fan T., Yang X., Shen J., Cheng G., Zhang Z.: “Maternal cardiac remodeling and dysfunction in preeclampsia: a three-dimensional speckle-tracking echocardiography study”. Int. J. Cardiovasc. Imaging, 2015, 31, 1361-1368.
doi: 10.1007/s10554-015-0694-y pmid: 26077816
[13] Grant A.D., Negishi K., Negishi T., Collier P., Kapadia S.R., Thomas J.D., et al.: “Grading diastolic function by echocardiography: hemodynamic validation of existing guidelines”.. Cardiovasc Ultrasound, 2015, 13, 28.
[14] Gandhi S.K., Powers J.C., Nomeir A.M., Fowle K., Kitzman D.W., Rankin K.M., et al.: “The pathogenesis of acute pulmonary edema associated with hypertension” N. Engl. J. Med., 2001, 344, 17-22.
doi: 10.1056/NEJM200101043440103 pmid: 11136955
[15] Higashi M., Yamaura K., Ikeda M., Shimauchi T., Saiki H., Hoka S.: “Diastolic dysfunction of the left ventricle is associated with pulmonary edema after renal transplantation”. Acta. Anaesthesiol. Scand., 2013, 57, 1154-1160.
doi: 10.1111/aas.12168 pmid: 23909639
[16] Tihtonen K., Koobi T., Yli-Hankala A., Huhtala H., Uotila J.: “Maternal haemodynamics in pre-eclampsia compared with normal pregnancy during caesarean delivery”. BJOG., 2006, 113, 657-663.
doi: 10.1111/j.1471-0528.2006.00931.x pmid: 16709208
[17] Borghi C., Esposti D.D., Immordino V., Cassani A., Boschi S., Bovicelli L., et al.: “Relationship of systemic hemodynamics, left ventricular structure and function, and plasma natriuretic peptide concentrations during pregnancy complicated by preeclampsia”. Am. J. Obstet. Gynecol., 2000, 183, 140-147.
doi: 10.1067/mob.2000.105684 pmid: 10920322
[18] Seong W.J., Kim S.C., Hong D.G., Koo T.B., Park I.S.: “Amino-terminal pro-brain natriuretic peptide levels in hypertensive disorders complicating pregnancy”. Hypertens Pregnancy, 2011, 30, 287-294.
doi: 10.3109/10641950903115046
[19] Giannubilo S.R., Cecchi S., Tidu E., Ciavattini A.: “Maternal NT-proBNP in chronic hypertensive pregnancies and superimposed preeclampsia”. Int. J. Cardiol., 2014, 176, 1227-1229.
doi: 10.1016/j.ijcard.2014.07.214 pmid: 25115250
[1] H. Yolli, M.E. Demir, R. Yildizhan. Neutrophil gelatinase associated lipocalin-2 (Ngal) levels in preeclampsia[J]. Clinical and Experimental Obstetrics & Gynecology, 2020, 47(4): 519-523.
[2] A.E. Kholeif, M.Y. Khamis, S. Eltabakh, R.S. Swilam, A. Elhabashy, R. EISherif. Prediction of severity of preeclampsia in Egyptian patients: role of neutrophil/lymphocyte ratio, platelet/lymphocyte ratio and C-reactive protein[J]. Clinical and Experimental Obstetrics & Gynecology, 2020, 47(2): 183-188.
[3] G. Chiu, A. Zhao, B. Zhang, T. Zhang. Clinical value of isolated intracardiac echogenic focus in the fetal heart: A retrospective study in Chinese women[J]. Clinical and Experimental Obstetrics & Gynecology, 2019, 46(6): 972-976.
[4] J. Yoon Park, S.W. Lee, K.J. Oh, J.-S. Hong. High mean blood pressure during the first trimester is predictive of future preeclampsia development in healthy pregnant women: a cohort study in Korea[J]. Clinical and Experimental Obstetrics & Gynecology, 2019, 46(5): 770-775.
[5] D. Matsubara, H. Takahashi, K. Kataoka, T. Minami, R. Furukawa, S. Matsubara, T. Yamagata. Tracheal stenosis due to vascular rings: its possible prenatal diagnosis based on four cases of vascular rings with or without eventual tracheal stenosis[J]. Clinical and Experimental Obstetrics & Gynecology, 2019, 46(5): 828-830.
[6] Y.E. Purut, E.E. Buyukbayrak, F. Ercan, A. Orcun, M. Menke, A.Y. Karageyim Karsidag. Do first trimester maternal serum follistatin like 3 levels predict preeclampsia and/or related adverse pregnancy outcomes?[J]. Clinical and Experimental Obstetrics & Gynecology, 2019, 46(2): 195-200.
[7] E. Ertekin, Ö. Tunçyürek, S. Kafkas, Y. Özsunar. Does the placental strain ratio correlate with the umbilical artery Doppler values?[J]. Clinical and Experimental Obstetrics & Gynecology, 2019, 46(2): 227-230.
[8] A. Simsek, S. Uludag, A. Tuten, A. S. Acikgoz, S. Uludag. Maternal and perinatal outcomes in early onset and late onset preeclampsia[J]. Clinical and Experimental Obstetrics & Gynecology, 2018, 45(6): 837-841.
[9] B. Dullaert, S. Schroven, Y. Jacquemyn. The effect of maternal vitamin D status on pregnancy outcome and child health in the first year of life[J]. Clinical and Experimental Obstetrics & Gynecology, 2018, 45(5): 677-681.
[10] Jinqi Ma, Hua Yao. Persistent hypertension post-preeclampsia: a tertiary care centre-based study in China[J]. Clinical and Experimental Obstetrics & Gynecology, 2018, 45(5): 741-744.
[11] R. Einikytė, A. Dapkeviciute, V. Dzenkeviciute, S. Kasnauskiene, V. Sapoka, D. Ramasauskaite. The importance of angiogenic and antiangiogenic biomarkers in pathogenesis and early diagnosis of preeclampsia[J]. Clinical and Experimental Obstetrics & Gynecology, 2018, 45(4): 485-492.
[12] H. Kobayashi, T. Tsunemi, J. Akasaka, N. Koike, A. Shigemitsu. F. Ito, Y. Yamada, E. Fujii. Preeclampsia as a parental epigenetic disease[J]. Clinical and Experimental Obstetrics & Gynecology, 2018, 45(4): 493-502.
[13] A. Jafari, S. Parchami, S. Reiisi, S. Miraj. Association of plasma homocysteine, folic acid levels, and C677T polymorphism in methylene tetra hydrofolate reductase with risk of preeclampsia: a case-control study in Iranian women[J]. Clinical and Experimental Obstetrics & Gynecology, 2018, 45(3): 367-374.
[14] E.S. Kayaaltı, S. Kumbasar, B.A. Şık. The effectiveness of extended fetal echocardiography in evaluating fetal cardiac morphology[J]. Clinical and Experimental Obstetrics & Gynecology, 2018, 45(2): 182-186.
[15] E. Shim, J.Y. Park, H.J. Seol. Placental expression of retinol-binding protein 4 in patients with preeclampsia[J]. Clinical and Experimental Obstetrics & Gynecology, 2018, 45(1): 98-101.
No Suggested Reading articles found!