Please wait a minute...
Clinical and Experimental Obstetrics & Gynecology  2020, Vol. 47 Issue (4): 496-499    DOI: 10.31083/j.ceog.2020.04.3433
Original Research Previous articles | Next articles
Rapid diagnostic testing of a neonate in a family with hypertrophic cardiomyopathy
H. Ueda1, T. Miyamoto1, *(), Y. Tsurusaki2, G. Minase1, N. Matsumoto2, K. Sengoku1
1Department of Obstetrics and Gynecology, Asahikawa Medical University, Asahikawa 0788510, Japan
2Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
Download:  PDF(214KB)  ( 230 ) Full text   ( 8 )
Export:  BibTeX | EndNote (RIS)      

Familial hypertrophic cardiomyopathy (HCM) is a common but severe genetic disease. A pregnant woman with familial HCM was referred to our hospital as both the couple and their families were concerned that the baby would later develop HCM. Therefore, we determined the risk of HCM in the neonate. Using whole-exome sequencing, mutational analysis was performed on the patient, her family members (including her father, mother, sister, and husband), and the neonate. Sanger sequencing was also performed. We found that HCM in this family was caused by a mutation in the cardiac heavy chain β-myosin (MYH7) gene. Encouragingly, the neonate did not carry this MYH7 mutation as the father was also negative. We were able to determine that the neonate had no risk of familial HCM. Obstetricians should consider genetic screening if a pregnant woman has a severe risk of such familial complications. Content: We demonstrated absence of familial HCM in a neonate and suggest appropriate genetic screening in pregnant women with familial complications.

Key words:  Early diagnosis      Hypertrophic cardiomyopathy      Mutation      MYH7      Whole-exome sequencing     
Submitted:  16 September 2015      Accepted:  04 November 2015      Published:  15 August 2020     
Fund: 25462547/Japan Society for the Promotion of Science;26462469/Japan Society for the Promotion of Science;24249019/Japan Society for the Promotion of Science;12024421/Ministry of Education, Culture, Sports, Science, and Technology of Japan;11105137/Ministry of Health, Labor and Welfare of Japan, the Strategic Research Program for Brain Sciences
*Corresponding Author(s):  T. Miyamoto     E-mail:

Cite this article: 

H. Ueda, T. Miyamoto, Y. Tsurusaki, G. Minase, N. Matsumoto, K. Sengoku. Rapid diagnostic testing of a neonate in a family with hypertrophic cardiomyopathy. Clinical and Experimental Obstetrics & Gynecology, 2020, 47(4): 496-499.

URL:     OR

Figure 1.  — Genetic analysis of the MYH7 mutation in the family. (a) The family pedigree. (b) Electropherograms of the MYH7 mutation. MT, mutant allele; WT, wild type allele.

Table 1  — Three programs (SIFT, PolyPhen-2, and Mutation Taster) predicted that the c.2770G>A mutation in MYH7 would influence protein function. This mutation was first reported in 1992 [11].
Gene Mutation SIFT PolyPhen-2 Mutation Taster
MYH7 c.2770G>A 0.00 0.995 Disease-causing
(NM_000257) p.E924K (deleterious) (probablydamaging)
[1] Maron B.J.: “Hypertrophic cardiomyopathy: a systematic review”. JAMA, 2002, 287, 1308-1320.
doi: 10.1001/jama.287.10.1308 pmid: 11886323
[2] Maron B.J., Towbin J.A., Thiene G., Antzelevitch C., Corrado D., Arnett D., et al.: “Contemporary definitions and classification of the cardiomyopathies: an American Heart Association Scientific Statement from the Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups; and Council on Epidemiology and Prevention”. Circulation, 2006, 113, 1807-1816.
doi: 10.1161/CIRCULATIONAHA.106.174287 pmid: 16567565
[3] Maron B.J., Shirani J., Poliac L.C., Mathenge R., Roberts W.C., Mueller F.O.: “Sudden death in young competitive athletes. Clinical, demographic, and pathological profiles”. JAMA, 1996, 276, 199-204.
pmid: 8667563
[4] Núñez L., Gimeno-Blanes J.R., Rodríguez-García M.I., Monserrat L., Zorio E., Coats C., et al.: “Somatic MYH7, MYBPC3, TPM1, TNNT2 and TNNI3 mutations in sporadic hypertrophic cardiomyopathy”. Cir. J., 2013, 77, 2358-2365.
doi: 10.1253/circj.CJ-13-0294
[5] Konno T., Chang S., Seidman J.G., Seidman C.E.: “Genetics of hypertrophic cardiomyopathy”. Curr. Opin. Cardiol., 2010, 25, 205-209.
doi: 10.1097/HCO.0b013e3283375698 pmid: 20124998
[6] Teekakirikul P., Kelly M.A., Rehm H.L., Lakdawala N.K., Funke B.H.: “Inherited cardiomyopathies: molecular genetics and clinical genetic testing in the postgenomic era”. J. Mol. Diagn., 2013, 15, 158-170.
doi: 10.1016/j.jmoldx.2012.09.002
[7] Wheeler M., Pavlovic A., DeGoma E., Salisbury H., Brown C., Ashley E.A.: “A new era in clinical genetic testing for hypertrophic cardiomyopathy”. J. Cardiovasc. Transl. Res., 2009, 2, 381-391.
doi: 10.1007/s12265-009-9139-0 pmid: 20559996
[8] Costa J.L., Sousa S., Justino A., Kay T., Fernandes S., Cirnes L., et al.: “Nonoptical massive parallel DNA sequencing of BRCA1 and BRCA2 genes in a diagnostic setting”. Hum. Mutat., 2013, 34, 629-635.
doi: 10.1002/humu.22272
[9] Meder B., Haas J., Keller A., Heid C., Just S., Borries A., et al.: “Targeted next-generation sequencing for the molecular genetic diagnostics of cardiomyopathies”. Circ. Cardiovasc. Genet., 2011, 4, 110-122.
doi: 10.1161/CIRCGENETICS.110.958322 pmid: 21252143
[10] Lopes L.R., Zekavati A., Syrris P., Hubank M., Giambartolomei C., Dalageorgou C., et al.: “Genetic complexity in hypertrophic cardiomyopathy revealed by high-throughput sequencing”. J. Med. Genet., 2013, 50, 228-239.
doi: 10.1136/jmedgenet-2012-101270 pmid: 23396983
[11] Watkins H., Rosenzweig A., Hwang D.S., Levi T., McKenna W., Seidman C.E., et al.: “Characteristics and prognostic implications of myosin missense mutations in familial hypertrophic cardiomyopathy”. N. Engl.J. Med., 1992, 326, 1108-1114.
doi: 10.1056/NEJM199204233261703
[12] Bos J.M., Towbin J.A., Ackerman M.J.: “Diagnostic, prognostic, and therapeutic implications of genetic testing for hypertrophic cardiomyopathy”. J. Am. Coll. Cardiol., 2009, 54, 201-211.
doi: 10.1016/j.jacc.2009.02.075 pmid: 19589432
[13] Niimura H., Patton K.K., McKenna W.J., Soults J., Maron B.J., Seidman J.G.: “Sarcomere protein gene mutations in hypertrophic cardiomyopathy of the elderly”. Circulation, 2002, 105, 446-451.
doi: 10.1161/hc0402.102990 pmid: 11815426
[14] Richard P., Charron P., Carrier L., Ledeuil C., Cheav T., Pichereau C., et al.: “Hypertrophic cardiomyopathy: distribution of disease genes, spectrum of mutations, and implications for a molecular diagnosis strategy”. Circulation, 2003, 107, 2227-2232.
doi: 10.1161/01.CIR.0000066323.15244.54 pmid: 12707239
[15] Erdmann J., Daehmlow S., Wischke S., Senyuva M., Werner U., Raible J., et al.: “Mutation spectrum in a large cohort of unrelated consecutive patients with hypertrophic cardiomyopathy”. Clin. Genet., 2003, 64, 339-349.
doi: 10.1034/j.1399-0004.2003.00151.x pmid: 12974739
[16] García-Castro M., Reguero J.R., Batalla A., Díaz-Molina B., González P., Alvarez V., et al.: “Hypertrophic cardiomyopathy: low frequency of mutations in the beta-myosin heavy chain (MYH7) and cardiac troponin T (TNNT2) genes among Spanish patients”. Clin. Chem., 2003, 49, 1279-1285.
doi: 10.1373/49.8.1279 pmid: 12881443
[17] Morita H., Rehm H.L., Menesses A., McDonough B., Roberts A.E., Kucherlapati R., et al.: “Shared genetic causes of cardiac hypertrophy in children and adults”. N. Engl. J. Med., 2008, 358, 1899-1908.
doi: 10.1056/NEJMoa075463 pmid: 18403758
[18] Morita H., Larson M.G., Barr S.C., Vasan R.S., O'Donnell C.J., Hirschhorn J.N., et al.: “Single-gene mutations and increased left ventricular wall thickness in the community: the Framingham Heart Study”. Circulation, 2006, 113, 2697-2705.
doi: 10.1161/CIRCULATIONAHA.105.593558 pmid: 16754800
[19] Coto E., Reguero J.R., Palacín M., Gómez J., Alonso B., Iglesias S., et al.: “Resequencing the whole MYH7 gene (including the intronic, promoter, and 3' UTR sequences) in hypertrophic cardiomyopathy”. J. Mol. Diagn., 2012, 14, 518-524.
doi: 10.1016/j.jmoldx.2012.04.001
[20] Colegrave M., Peckham M.: “Structural implications of β-cardiac myosin heavy chain mutations in human disease”. Anat. Rec. (Hoboken), 2014, 297, 1670-1680.
doi: 10.1002/ar.v297.9
[21] Blankenfeldt W., Thomä N.H., Wray J.S., Gautel M., Schlichting I.: “Crystal structures of human cardiac beta-myosin II S2-Delta provide insight into the functional role of the S2 subfragment”. Proc. Natl. Acad. Sci. USA., 2006, 103, 17713-17717.
doi: 10.1073/pnas.0606741103 pmid: 17095604
[1] J.Z. Zeng, Y. Dong, H.Y. Zhu, X. Xie, J.R. Liu, L. Li, Y.H. Zhai, Z. Cao. A 26-year-old pregnant woman with mild gingival bleeding[J]. Clinical and Experimental Obstetrics & Gynecology, 2020, 47(3): 412-414.
[2] Q.C. Wu, W.B. Wang, L. Sun, Y.S. Xu, X.J. Xie, X.M. Ma, Z.Y. Su. Mutation analysis of the fibroblast growth factor receptor 3 gene in fetuses with thanatophoric dysplasia, type I[J]. Clinical and Experimental Obstetrics & Gynecology, 2020, 47(1): 7-11.
[3] N. Haya, I. Feferkorn, F. Fares, N. Azzam, R. Auslender, Y. Abramov. Elastin genetic point mutation and the risk of pelvic organ prolapse[J]. Clinical and Experimental Obstetrics & Gynecology, 2020, 47(1): 75-78.
[4] D.Y. Ma, G. Liu, C.Y. Luo, A. Liu, J.J. Zhang, P. Hu, J. Cheng, Y.G. Wang, T. Jiang, J.F. Xu. A novel mutation in the mutations in the methyl-CpG-binding protein 2 (MECP2) gene in a Chinese patient with typical Rett syndrome and subsequent prenatal diagnosis[J]. Clinical and Experimental Obstetrics & Gynecology, 2018, 45(6): 924-929.
No Suggested Reading articles found!