Please wait a minute...
Clinical and Experimental Obstetrics & Gynecology  2020, Vol. 47 Issue (3): 372-375    DOI: 10.31083/j.ceog.2020.03.5121
Original Research Previous articles | Next articles
Perinatal outcome of fetuses with echogenic intracardiac focus
M. Özsürmeli1, *(), M. Sucu2, E. Arslan2, S. Büyükkurt2
1Derince Research and Education Hospital, Department of Obstetrics and Gynecology, Kocaeli, Turkey
2University of Çukurova, School of Medicine, Department of Obstetrics and Gynecology, Perinatology Unit, Adana, Turkey
Download:  PDF(158KB)  ( 315 ) Full text   ( 8 )
Export:  BibTeX | EndNote (RIS)      
Abstract  

Objective: Echogenic intracardiac focus (EIF), a microcalcification of the papillary muscles in either or both ventricles of the fetal heart, is one of the more common ultrasonographic soft markers of trisomy 21. This study aimed to determine the relationship of EIF with trisomies in the presence of various ultrasonographic findings. Materials and Methods: A retrospective study of second-trimester obstetric sonograms (18-24 weeks) was conducted at a tertiary care center over a two-year period. The patients were divided into three groups: isolated EIF (group 1), EIF with at least one soft marker (group 2), and EIF with structural anomalies (group 3). All the groups were divided into subgroups on the basis of a screening test (maternal age ≥ 35, positive combined-triple-quadruple tests). The incidence of chromosome anomalies was evaluated. Results: The authors examined 8,300 patients during the study period and found 170 fetuses with isolated EIF (group 1), 26 fetuses with EIF and soft markers (group 2), and 37 fetuses with EIF and structural anomalies (group 3). Thirteen (8%) patients underwent fetal karyotyping in group 1, 10 (38%) in group 2, and 22 (60%) in group 3. The rate of the invasive test was higher in fetuses exhibiting EIF accompanied by at least one of the soft markers. No trisomy was detected in group 1 or 2. Conclusion: The risk of aneuploidy did not increase in either isolated EIF or in cases with other soft markers but only in cases with structural anomalies.

Key words:  Diagnosis      Prenatal ultrasonography      Trisomies      Abnormality      Congenital     
Submitted:  12 December 2018      Accepted:  04 March 2019      Published:  15 June 2020     
*Corresponding Author(s):  MEHMET ÖZSÜRMELI     E-mail:  ozsurmeli@gmail.com

Cite this article: 

M. Özsürmeli, M. Sucu, E. Arslan, S. Büyükkurt. Perinatal outcome of fetuses with echogenic intracardiac focus. Clinical and Experimental Obstetrics & Gynecology, 2020, 47(3): 372-375.

URL: 

https://ceog.imrpress.com/EN/10.31083/j.ceog.2020.03.5121     OR     https://ceog.imrpress.com/EN/Y2020/V47/I3/372

Table 1  — Demographic features and location of EIF
Group 1 (n = 170) Group 2 (n = 26) Group 3 (n = 37)
Mean maternal age 31.4 ± 5.9 (19-44) 31.6 ± 6 (19-41) 29.2 ± 7 (18-42)
Mean gestational age 21.8 ± 2.5 (15-31) 21.7 ± 2.7 (16-28) 21.7 ± 5.1 (15-33)
EIF location (ventricule, n)
Left / Right / both 153 / 7 / 10 21 / 3 / 2 36 / 1 / 0
Outcomes
Term 157 23 6
Preterm 13 3 4
Termination of pregnancy 27
Table 2  — Outcomes of fetuses with EIF
Group 1 (n = 170) Group 2 (n = 26) Group 3 (n = 37) P value
High risk in screening tests /Karyotype 17/5 4/1 3/3
Low risk in screening tests /Karyotype 153/8 22/9 34/19
Total n/ Karyotype 170/13 26/10 37/22
Total n / Chromosome anomalies (%) 170/0 (0%) 26/0 (0%) 37/7 (18,9%) 0.0001
In total Karyotype n / Chromosome anomalies (%) 13/0 (%0) 10/0 (0%) 22/7 (31,8%) 0.013
Table 3  — Fetuses with structural anomalies
Structurel anomalies N
Intracranial anomalies 15
Heart anomalies 8
Gastrointestinal tract anomalies 4
Urinary tract anomalies 1
Spinal anomalies 5
Skeletal anomalies 2
Face and neck anomalies 5
Fetal hydrops 1
[1] Nyberg D.A., Souter V.L., El-Bastawissi A., Young S., Luthhardt F., Luthy D.A.: “Isolated sonographic markers for detection of fetal Down syndrome in the second trimester of pregnancy”. J. Ultrasound Med., 2001, 20, 1053.
doi: 10.7863/jum.2001.20.10.1053 pmid: 11587012
[2] Bromley B., Lieberman E., Shipp T.D., Benacerraf B.R.: “The genetic sonogram: a method of risk assessment for Down syndrome in the second trimester”. J. Ultrasound Med., 2002, 21, 1087.
doi: 10.7863/jum.2002.21.10.1087 pmid: 12369663
[3] Facio M.C., Hervías-Vivancos B., Broullón J.R., Avila J., Fajardo-Expósito M.A., Bartha J.L.: “Cardiac biometry and function in euploid fetuses with intracardiac echogenic foci”. Prenat. Diagn., 2012, 32, 113.
doi: 10.1002/pd.2903 pmid: 22418952
[4] Chasen S.T., Razavi A.S.: “Echogenic intracardiac foci: disclosure and the rate of amniocentesis in low-risk patients’”. Am. J. Obstet. Gynecol., 2013, 209, 377.
doi: 10.1016/j.ajog.2013.05.046 pmid: 24070397
[5] Bromley B., Lieberman E., Laboda L.A., Benacerraf B.R.: “Echogenic intracardiac focus, a sonographic sign for Down Syndrome?” Obstet. Gynecol., 1995, 86, 998.
doi: 10.1016/0029-7844(95)00323-j pmid: 7501356
[6] Doubilet P.M., Copel J.A., Benson C.B., Bahado-Singh R.O., Platt L.D.: “Choroid plexus cyst and echogenic intracardiac focus in women at low risk for chromosomal anomalies: the obligation to inform the mother”. J. Ultrasound. Med., 2004, 23, 883.
doi: 10.7863/jum.2004.23.7.883 pmid: 15292554
[7] Rodriguez R., Herrero B., Bartha JL.: “The continuing enigma of the fetal echogenic intracardiac focus in prenatal ultrasound”. Curr. Opin. Obstet. Gynecol., 2013, 25, 145.
doi: 10.1097/GCO.0b013e32835e14eb pmid: 23340246
[8] Salomon L.J., Alfirevic Z., Berghella V., Bilardo C., Hernandez-Andrade E., Johnsen S.L., et al.: “ISUOG Clinical Standards Committee. Practice guidelines for performance of the routine mid-trimester fetal ultrasound scan”. Ultrasound Obstet. Gynecol., 2011, 37, 116.
doi: 10.1002/uog.8831 pmid: 20842655
[9] Carvalho J.S., Allan L.D., Chaoui R., Copel J.A., De Vore G.R., Hecher K., et al.: “ISUOG Practice Guidelines (updated): sonographic screening examination of the fetal heart”. Ultrasound Obstet. Gynecol., 2013, 41, 348.
doi: 10.1002/uog.12403 pmid: 23460196
[10] Wax J.R., Pinette M.G., Cartin A., Blackstone J.: “Second-trimester genetic sonography after first-trimester combined screening for trisomy 21”. J. Ultrasound Med., 2009, 28, 321.
doi: 10.7863/jum.2009.28.3.321 pmid: 19244068
[11] Sood M., Rochelson B., Krantz D., Ravens R., Tam Tam H., Vohra N., et al.: “Are second-trimester minor sonographic markers for Down syndrome useful in patients who have undergone first-trimester combined screening?”. Am. J. Obstet. Gynecol., 2010, 203, 408.
doi: 10.1016/j.ajog.2010.05.030 pmid: 20633867
[12] Ouzounian J.G., Ludington C., Chan S.: “Isolated choroid plexus cyst or echogenic cardiac focus on prenatal ultrasound: is genetic amniocentesis indicated?”. Am. J. Obstet. Gynecol., 2007, 196, 595.
doi: 10.1016/j.ajog.2007.03.012 pmid: 17547911
[13] Huang S.Y., Shaw S.W., Cheuh H.Y., Cheng P.J.: “Intracardiac echogenic focus and trisomy 21 in a population previously evaluated by first-trimester combined screening”. Acta Obstet. Gynecol. Scand., 2010, 89, 1017.
doi: 10.3109/00016349.2010.485631 pmid: 20521868
[14] Shanks A.L., Odibo A.O., Gray D.L.: ‘ “Echogenic intracardiac foci: associated with increased risk for fetal trisomy 21 or not?” J. Ultrasound Med., 2009, 28, 1639.
doi: 10.7863/jum.2009.28.12.1639 pmid: 19933476
[15] Sotiriadis A., Makrydimas G., Ioannidis J.P.: “Diagnostic performance of intracardiac echogenic foci for Down syndrome: a meta-analysis”. Obstet. Gynecol., 2003, 101, 1009.
doi: 10.1016/s0029-7844(03)00168-6 pmid: 12738165
[16] Bromley B., Lieberman E., Shipp T.D., Richardson M., Benacerraf B.R.: “Significance of an echogenic intracardiac focus in fetuses at high and low risk for aneuploidy”. J. Ultrasound Med., 1998, 17, 127.
doi: 10.7863/jum.1998.17.2.127 pmid: 9527573
[17] Lorente A.M., Moreno-Cid M., Rodríguez M.J., Bueno G., Tenías J.M., Román C., et al.: “Meta-analysis of validity of echogenic intracardiac foci for calculating the risk of Down syndrome in the second trimester of pregnancy”. Taiwan J. Obstet. Gynecol., 2017, 56, 16.
doi: 10.1016/j.tjog.2016.11.002 pmid: 28254219
[18] Wax J.R., Mather J., Steinfeld J.D., Ingardia C.J.: “Fetal intracardiac echogenic foci: current understanding and clinical significance”. Obstet. Gynecol. Surv., 2000, 55, 303.
doi: 10.1097/00006254-200005000-00024 pmid: 10804537
[1] H. Ueda, T. Miyamoto, Y. Tsurusaki, G. Minase, N. Matsumoto, K. Sengoku. Rapid diagnostic testing of a neonate in a family with hypertrophic cardiomyopathy[J]. Clinical and Experimental Obstetrics & Gynecology, 2020, 47(4): 496-499.
[2] B.F. Zhou, C.X. Duan, D.L. Tang. Methylmalonic acidemia in prenatal diagnosis[J]. Clinical and Experimental Obstetrics & Gynecology, 2020, 47(4): 617-619.
[3] D. Lu, D. Cao, Q. Zhao, X. Chen. Prenatal diagnosis and genetic counseling of mosaicism for chromosome t (7; 14) with a favorable outcome[J]. Clinical and Experimental Obstetrics & Gynecology, 2020, 47(3): 427-428.
[4] R. Suvannasarn, T. Tongsong, P. Jatavan. Amniotic fluid embolism: the pathophysiology, diagnostic clue, and blood biomarkers indicator for disease prediction[J]. Clinical and Experimental Obstetrics & Gynecology, 2020, 47(2): 159-165.
[5] W.B. Wang, Q. Wu, Y. Zhou, X. Zhong, Y. Ge, J. Zhang. A 10-year retrospective study on prenatal cytogenetic analyses[J]. Clinical and Experimental Obstetrics & Gynecology, 2020, 47(2): 248-252.
[6] T. T. Kitova, B. D. Kitov, E. H. Uchikova, N. T. Ahmad. Maternal age - a risk factor for congenital hydrocephalus[J]. Clinical and Experimental Obstetrics & Gynecology, 2020, 47(2): 257-261.
[7] D. Yang, H.F. Zhang, Q. Liu, Y.N. Li, J. Zhang, T. Zheng. Pregnancy outcomes in women with congenitally corrected transposition of the great arteries[J]. Clinical and Experimental Obstetrics & Gynecology, 2020, 47(2): 291-295.
[8] C. Chan, J.W. Wang, C.W. Wang, C.W. Chang. A pitfall in ultrasonographic diagnosis–heterotopic cornual pregnancy initially misdiagnosed as leiomyoma[J]. Clinical and Experimental Obstetrics & Gynecology, 2020, 47(2): 296-298.
[9] H. Morita, Y. Yamasaki, S. Sugino, H. Koh, N. Kojima, K. Kitajima, T. Yamazaki, K. Takeuchi. Successful laparoscopic tumorectomy of struma ovarii diagnosed preoperatively[J]. Clinical and Experimental Obstetrics & Gynecology, 2020, 47(2): 312-314.
[10] M. Özsürmeli, M. Sucu, E. Arslan. Prenatal diagnosis of ductus venosus agenesis: a retrospective study of associated cytogenetic/congenital anomalies[J]. Clinical and Experimental Obstetrics & Gynecology, 2020, 47(1): 12-15.
[11] M. Liu, J. Liu, J. Chen. Giant broad ligament hysteromyoma with degenertion: report of one case[J]. Clinical and Experimental Obstetrics & Gynecology, 2020, 47(1): 126-128.
[12] J. Huang, Z. Zhang. Spontaneous umbilical cord vascular rupture before labor for congenital defects with a live birth: a case report[J]. Clinical and Experimental Obstetrics & Gynecology, 2020, 47(1): 142-143.
[13] M. S. Jo, H. J. Lee, Y. J. Lee, S. C. Kim, J. K. Joo, K. S. Lee. Which is the safer method for trophectoderm biopsy in mouse blastocyst, mechanical or laser?[J]. Clinical and Experimental Obstetrics & Gynecology, 2020, 47(1): 27-30.
[14] Hongying Zhang, Qingling Wei, Jinlan Wei, Haiyang Pang, Wenxuan Wei, Yu Sun, Mengya He, Yanling Sun. Importance of diagnosis time on pregnancy outcomes in pregnant women with pre-gestational diabetes mellitus[J]. Clinical and Experimental Obstetrics & Gynecology, 2020, 47(1): 57-61.
[15] Q.C. Wu, W.B. Wang, L. Sun, Y.S. Xu, X.J. Xie, X.M. Ma, Z.Y. Su. Mutation analysis of the fibroblast growth factor receptor 3 gene in fetuses with thanatophoric dysplasia, type I[J]. Clinical and Experimental Obstetrics & Gynecology, 2020, 47(1): 7-11.
No Suggested Reading articles found!