Please wait a minute...
Clinical and Experimental Obstetrics & Gynecology  2020, Vol. 47 Issue (2): 248-252    DOI: 10.31083/j.ceog.2020.02.5174
Original Research Previous articles | Next articles
A 10-year retrospective study on prenatal cytogenetic analyses
W. B. Wang1, Q. Wu1, Y. Zhou1, X. Zhong1, Y. Ge1, J. Zhang1, *()
1Prenatal Diagnosis Center, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen City, Fujian Province, P.R. China
Download:  PDF(3469KB)  ( 213 ) Full text   ( 8 )
Export:  BibTeX | EndNote (RIS)      
Abstract  Objective: To analyze the indications and results of prenatal cytogenetic screening in patients from a specialized center in Xiamen City, China, to provide a reference database for prenatal diagnosis. Materials and Methods: This retrospective, observational study included 7,400 pregnant women who underwent chorionic villous sampling (CVS), amniocentesis or cordocentesis at the Women and Children's Hospital, School of Medicine, Xiamen University, China, over a 10-year period (2008-2018). Clinical data and the results of the cytogenetic analysis were assessed. Results: Fetal chromosomal aberrations were observed in 335 of 7, 400 (4.5%) cases, with trisomy 21 the most common aberration (87/335, 26%). A high risk on maternal serum screening was the indication for cytogenetic analysis in 36 of the 87 fetuses with trisomy 21 (41.4%). Abnormal fetal ultrasonographic findings were the clinical indication for cytogenetic testing in more than half of fetuses with abnormal karyotypes (181/335, 54%). Conclusions: Prenatal cytogenetic analysis is useful for the prenatal diagnosis of birth defects in Xiamen City, and may prevent termination of potentially healthy fetuses.
Key words:  Aneuploidy      Cytogenetics      Karyotype analysis      Prenatal diagnosis     
Published:  15 April 2020     
*Corresponding Author(s):  J. Zhang     E-mail:  zhangjian983@xmu.edu.cn

Cite this article: 

W. B. Wang, Q. Wu, Y. Zhou, X. Zhong, Y. Ge, J. Zhang. A 10-year retrospective study on prenatal cytogenetic analyses. Clinical and Experimental Obstetrics & Gynecology, 2020, 47(2): 248-252.

URL: 

https://ceog.imrpress.com/EN/10.31083/j.ceog.2020.02.5174     OR     https://ceog.imrpress.com/EN/Y2020/V47/I2/248

Table 1  — Summary of prenatal diagnostic tests performed between 2008 and 2018 at the Women and Children's Hospital, School of Medicine, Xiamen University, and the fetal abnormality detection rates.
Indication Amniocentesis Cordocentesis CVS Total Abnormal result
n (%) n (%) n (%) n (%) n n (%)
High risk for trisomy 21 on maternal serum screening 2407(51%) 346(13.2%) 8(18.2%) 2761(37%)# 74 2761 (2.7%)
High risk for trisomy 18 on maternal serum screening 64(1.3%) 23(0.9%) 1(2.3%) 88(1.2%) 21 88 (2.4%)
Advanced maternal age (≥35 years) 1407(30%) 237(9.1%) 9(20.5%) 1653(22%) 38 1653(2.3%)
Abnormal findings on fetal ultrasound 246(5.2%) 1878(71.9%) 12(27.2%) 2136(29%) 181 2136 (8.5%)
Poor obstetrical history 547(11.5%) 116(4.4%) 11(25%) 674(9.1%) 7 674 (1.0%)
Parental chromosomal abnormality 73(1.5%) 12(0.5%) 3(6.8%) 88(1.2%) 14 88* (15.9%)
Total 4744 2612 44 7400 335 7400 (4.5%)
Table 2  — Diagnosis of chromosomal abnormalities according to clinical indications for prenatal screening.
Indication Trisomy 21 Trisomy 18 Trisomy 13 Sex chromosome Structural chromosome Total
n (%) n (%) n (%) n (%) n (%) n (%)
High risk for trisomy 21 on maternal serum screening 34 (39.1)# 8 (9.8) 0 11 (17.7) 21 (25.3) 74 (22.1%)
High risk for trisomy 18 on maternal serum screening 2 (2.3) 13 (15.9) 2 (9.5) 2 (3.2) 2 (2.4) 21 (6.3%)
Advanced maternal age (≥35 years) 15 (17.2) 10 (12.2) 1 (4.8) 6 (9.7) 6 (7.2) 38 (11.3%)
Abnormal findings on fetal ultrasound 32 (36.8) 49 (59.8)* 17 (81.0)* 35 (56.5)* 48 (57.9)* 181 (54%)
Poor obstetrical history 2 (2.3) 2 (2.4) 1 (4.8) 2 (3.2) 0 7 (2.1%)
Parental chromosomal abnormality 2 (2.3) 0 0 6 (9.7) 6 (7.2) 14 (4.2%)
Total 87 82 21 62 83 335
(100%)
Table 3  — Diagnosis of chromosomal abnormalities according to ultrasound indications.
Ultrasound indication Trisomy 21 Trisomy 18 Trisomy 13 Sex chromosomal aberrations Structural Aberrations Total
n (%) n (%) n (%) 45, X 47, XXY 47, XYY
n (%) n (%) n (%) n (%) n (%)
Fetal malformations
Cardiac abnormality 12 (37.5)# 4 (8.2) 3 (17.6) 15 (31.2) 34 (18.8)
Nuchal cystic hygroma 4 (8.2) 21 (65.6)# 25 (13.8)
Cleft lip/cleft palate 1 (5.9) 1 (2.1) 2 (0.5)
Fetal effusion/hydrops 1 (3.1) 4 (12.5) 1 6 (3.3)
Multiple malformations 21 (42.9)# 13 (76.5)# 1 (3.1) 1 36 (19.9)
Skeletal dysplasia 1 (3.1) 3 (6.3) 4 (2.2)
107 (59.1%)
Sonographic soft markers
Increased NT/NF* 6 (18.8) 1 (2.0) 1 (3.1) 1 2 (4.2) 11 (6.1)
Pyelectasis 1 3 (6.3) 4 (2.2)
EIFa 1 (3.1) 2 (6.3) 4 (8.3) 7 (3.9)
Hyperechoic bowel 3 (9.4) 4 (8.3) 7 (3.9)
CPCb 13 (26.5)# 13 (7.2)
Ventriculomegaly (≥10 mm) 2 2 (4.1) 1 (3.1) 1 9 (18.8) 15 (8.3)
Absent nasal bone 1 (3.1) 1 (0.6)
SUAc 3 (6.1) 1 (3.1) 5 (10.4) 9 (5.0)
Short femur and humerus 3 (9.4) 3 (1.7)
70 (38.7%)
Fetal malformations and/or two sonographic soft markers
Nuchal cystic hygroma+ pyelectasis 1 (3.1) 1 (0.6)
Absent nasal bone + EIF 1 (3.1) 1 (0.6)
CPC + heart abnormality 1 (2.0) 1 (0.6)
Fetal hydrops + hyperechoic bowel 1 (3.1) 1 (0.6)
4 (2.2%)
Total 32 49 17 32 1 2 48 181
[1] Caron L., Tihy F., Dallaire L.: “Frequencies of chromosomal abnormalities at amniocentesis: over 20 years of cytogenetic analyses in one laboratory”. Am. J. Med. Genet., 1999, 82, 149.
doi: 10.1002/(sici)1096-8628(19990115)82:2<149::aid-ajmg10>3.0.co;2-l pmid: 9934980
[2] Evans M.I., Wapner R.J.:“Invasive prenatal diagnostic procedures 2005”. Semin. Perinatol., 2005, 29, 215.
doi: 10.1053/j.semperi.2005.06.004 pmid: 16104671
[3] American College of Obstetricians and Gynecologist.: “ACOG Practice Bulletin NO.88, December 2007. Invasive prenatal testing for aneuploidy”. Obstet. Gynecol., 2007, 110, 1459.
doi: 10.1097/01.AOG.0000291570.63450.44 pmid: 18055749
[4] Alldred S.K., Takwoinqi Y., Guo B., Pennant M., Deeks J.J., Neilson J.P., et al.: “First trimester ultrasound tests alone or in combination with first trimester serum tests for Down’s syndrome screening”. Cochrane Database Syst Rev., 2017, 3, CD012600.
doi: 10.1002/14651858.CD012600 pmid: 28295158
[5] Lorente A.M.R., Moreno-Cid M., Rodriquez M.J., Bueno G., Tenías J.M., Román C., et al.: “Meta-analysis of validity of echogenic intracardiac foci for calculating the risk of Down syndrome in the second trimester of pregnancy”. Taiwan J. Obstet. Gynecol., 2017, 56, 16.
[6] Bashiri A., Burstein E., Hershkowitz R., Mazor M.: “Fetal echogenic bowel by ultrasound: what is the clinical significance?” Harefuah., 2007, 146, 964.
pmid: 18254450
[7] Picklesimer A.H., Moise K.J., Wolfe H.M.: “The impact of gestational age on the sonographic detection of aneuploidy”. Am. J. Obstet. Gynecol., 2005, 193, 1243.
doi: 10.1016/j.ajog.2005.05.045 pmid: 16157145
[8] Stetten G., Escallon C.S., South S.T., McMichael J.L., Saul D.O., Blakemore K.J.: “Reevaluating confined placental mosaicism”. Am. Med. Genet., 2004, 131, 232.
[9] Tongsong T., Wanapirak C., Kunavikatikul C., Sirir chotiyakul., Piya-mongkol W., Chanprapaph P.:“Fetal loss rate associated with cordo-centesis at midgestation”. Am. J. Obstet. Gynecol., 2001, 184, 719.
doi: 10.1067/mob.2001.111716 pmid: 11262478
[10] Ocak Z., Özlü T., Yazıcıoğlu H.F., Özyurt O., Aygün M.: “Clinical and cytogenetic results of a large series of amniocentesis cases from Turkey: report of 6124 cases”. J. Obstet. Gynaecol. Res., 2014, 40, 139.
doi: 10.1111/jog.12144 pmid: 24033845
[11] Carothers A.D., Boyd E., Lowther G., Ellis P.M., Couzin D.A., Faed M., Robb A.: “Trends in prenatal diagnosis of Down syndrome and other autosomal trisomies in Scotland 1990 to 1994, with associated cytogenetic and epidemiological findings”. Genet Epidemiol., 1999, 16, 179.
doi: 10.1002/(SICI)1098-2272(1999)16:2<179::AID-GEPI5>3.0.CO;2-7 pmid: 10030400
[12] Tseng J.J., Chou M.M., Lo F.C., Lai H.Y., Chen M.H., Ho E.S.:“Detection of chromosome aberrations in the Second Trimester using genetic amniocentesis: experience during 1995-2004”. Taiwan Obstet. Gynecol., 2006, 45, 39.
[1] Y.J. Wu, C.J. Yu, W.H. Tian, Z. Xu. Prenatal diagnosis and molecular cytogenetic characterization of two hereditary chromosomal duplications with favorable outcomes[J]. Clinical and Experimental Obstetrics & Gynecology, 2020, 47(5): 789-791.
[2] B.F. Zhou, C.X. Duan, D.L. Tang. Methylmalonic acidemia in prenatal diagnosis[J]. Clinical and Experimental Obstetrics & Gynecology, 2020, 47(4): 617-619.
[3] D. Lu, D. Cao, Q. Zhao, X. Chen. Prenatal diagnosis and genetic counseling of mosaicism for chromosome t (7; 14) with a favorable outcome[J]. Clinical and Experimental Obstetrics & Gynecology, 2020, 47(3): 427-428.
[4] Q.C. Wu, W.B. Wang, L. Sun, Y.S. Xu, X.J. Xie, X.M. Ma, Z.Y. Su. Mutation analysis of the fibroblast growth factor receptor 3 gene in fetuses with thanatophoric dysplasia, type I[J]. Clinical and Experimental Obstetrics & Gynecology, 2020, 47(1): 7-11.
[5] G. Szabó, J. Rigó Jr.. Prenatal ultrasound diagnosis of abdominal pregnancy of ovarian origin[J]. Clinical and Experimental Obstetrics & Gynecology, 2019, 46(6): 977-979.
[6] W. Homola, M. Zimmer. Safety of amniocentesis in normal pregnancies and pregnancies considered high-risk due to fetal genetic anomalies – an observational study[J]. Clinical and Experimental Obstetrics & Gynecology, 2019, 46(3): 403-407.
[7] D.Y. Ma, G. Liu, C.Y. Luo, A. Liu, J.J. Zhang, P. Hu, J. Cheng, Y.G. Wang, T. Jiang, J.F. Xu. A novel mutation in the mutations in the methyl-CpG-binding protein 2 (MECP2) gene in a Chinese patient with typical Rett syndrome and subsequent prenatal diagnosis[J]. Clinical and Experimental Obstetrics & Gynecology, 2018, 45(6): 924-929.
[8] S. G. Erzincan, N. C. Sayin, C. Inan, M. A. Yuce, F. G. Varol, S. Basaran. Cell-free DNA testing: is it reliable? A case report[J]. Clinical and Experimental Obstetrics & Gynecology, 2018, 45(6): 939-941.
[9] Yun Chen, Yunli Lai, Shang Yi, Yanqing Tang, Yaqin Lei, Sheng Yi, Yiping Shen, Hongwei Wei. Non-invasive prenatal screening for fetal aneuploidy in twin pregnancies by cell-free DNA analysis[J]. Clinical and Experimental Obstetrics & Gynecology, 2018, 45(5): 656-660.
[10] Bo Wang, Dan Lu, Zuliang Shi, Jian Ke, Qi Zhao, Hongjun Li. Prenatal diagnosis of a complex chromosomal rearrangement involving five chromosomes[J]. Clinical and Experimental Obstetrics & Gynecology, 2018, 45(5): 797-799.
[11] Sun Young Jung, Yong Teak Oh, Suk Young Kim. Predict pregnancy outcomes of prenatal megaureter by prenatal ultrasonography[J]. Clinical and Experimental Obstetrics & Gynecology, 2018, 45(4): 544-548.
[12] Guiling Wang, Aifang Jiang, Chun'e Ren. The relationship between qh+ and recurrent spontaneous abortion[J]. Clinical and Experimental Obstetrics & Gynecology, 2018, 45(1): 102-104.
[13] G. Capobianco, G. Virdis, C. Cherchi, A. Gulotta, P.L. Cherchi, S. Dessole. Diagnosis and management of fetal omphalocele: a case report[J]. Clinical and Experimental Obstetrics & Gynecology, 2018, 45(1): 129-131.
[14] J. Han, X. Liu, Y. Zhao, Y. Zhang, L. Sun, X. Gu, X. Yang, Y. Li, Y. He. Prenatal diagnosis of absent pulmonary valve syndrome: results of a single-center experience in Beijing[J]. Clinical and Experimental Obstetrics & Gynecology, 2017, 44(6): 834-838.
[15] K. Jiang, Z. Yang, W. Sun, Y. Ouyang. Is the absence of a yolk sac associated with chromosomal abnormality in early pregnancy loss?[J]. Clinical and Experimental Obstetrics & Gynecology, 2017, 44(6): 910-913.
No Suggested Reading articles found!