Please wait a minute...
Clinical and Experimental Obstetrics & Gynecology  2020, Vol. 47 Issue (2): 215-219    DOI: 10.31083/j.ceog.2020.02.5128
Original Research Previous articles | Next articles
Separate transfer of two frozen-thawed embryos reduces multiple gestations in assisted reproductive technology
T. Hasegawa1, *(), K. Nakagawa2, R. Sugiyama2, N. Kuji1, H. Nishi1
1Department of Obstetrics and Gynecology, Tokyo Medical University, Shinjyuku, Tokyo, Japan
2Division of Reproductive Medicine, Sugiyama Clinic, Setagaya, Tokyo, Japan
Download:  PDF(3138KB)  ( 218 ) Full text   ( 6 )
Export:  BibTeX | EndNote (RIS)      
Abstract  Aim: In assisted reproductive technology (ART), there are different opinions regarding how an embryo should be transferred to the uterus. For double embryo transfer (DET) cycles in particular, there is no consensus regarding the appropriate embryo transfer (ET) method. Therefore, the present authors developed a novel ET method called separated (s-DET); with this method, two embryos are transferred to separate settings. The authors evaluated and compared pregnancy outcomes of s-DET and conventional DET (c-DET). Materials and Methods: In this prospective cohort study, 129 patients underwent separated ET. One hundred fifty-two patients underwent c-DET, which involves transferring two embryos together. All patients underwent ET of two frozen-thawed embryos. Results: The clinical pregnancy and implantation rates of the s-DET group were 20.9 % and 10.4 %, respectively; these rates were similar to those of the conventional DET group (26.3 % and 16.1 %, respectively). However, the multiple gestation rate of the D-DET group (0.0 %) was significantly lower than that of the conventional double ET group (22.5 %; p = 0.006). Conclusions: s-DET might make ART safer and decrease multiple gestations resulting from DET cycles.
Key words:  Embryo transfer      In vitro fertilization      Obstetrics      Pregnancy      Assisted reproductive techniques     
Published:  15 April 2020     
*Corresponding Author(s):  T. Hasegawa     E-mail:  ppppq999@gmail.com

Cite this article: 

T. Hasegawa, K. Nakagawa, R. Sugiyama, N. Kuji, H. Nishi. Separate transfer of two frozen-thawed embryos reduces multiple gestations in assisted reproductive technology. Clinical and Experimental Obstetrics & Gynecology, 2020, 47(2): 215-219.

URL: 

https://ceog.imrpress.com/EN/10.31083/j.ceog.2020.02.5128     OR     https://ceog.imrpress.com/EN/Y2020/V47/I2/215

Figure 1.  — Ultrasound image of the s-DET procedure. After the first embryo is transferred to the fundus of the uterus, the second embryo is transferred to a position with a 1 cm space by inserting another transfer tube. The arrows indicate air bubbles following the transfer of embryos.

Table 1  — Background characteristics of the s-DET and c- DET groups.
s-DET c-DET P value
Cycles, n 129 152
Age, years# 38.8 ± 3.5 38.7 ± 3.8 NS
Previous ET attempts, n# 3.3 ± 3.3 3.9 ± 3.0 NS
Gravidity n# 0.9 ± 1.2 0.6 ± 0.9 NS
Parity, n# 0.3 ± 0.5 0.2 ± 0.4 NS
Cause of infertility
Male factor, n (%) 66 (51.2) 78 (51.3) NS
Tubal factor, n (%) 6 (4.7) 8 (5.2) NS
Endometriosis, n (%) 4 (3.1) 9 (6.0) NS
Unexplained, n (%) 53 (41.0) 57 (37.5) NS
Table 2  — Embryo quality between the s-DET and c-DET groups.
s-DET c-DET P value
No. of double good embryos, n (%) 35(27.1) 42(27.6) NS
No. of good & poor embryos, n (%) 62(48.1) 60(39.5) NS
No. of double poor embryos, n (%) 32(24.8) 50(32.9) NS
Best no. of blastomeres, n# 8.2 ± 1.7 7.9 ± 1.4 NS
Total no. of blastomeres, n# 15.3 ± 2.8 14.6 ± 2.3 NS
Table 3  — Reproductive outcomes in the s-DET and c-DET groups.
s-DET
(n = 129)
c-DET
(n = 152)
p value
Transferred embryos, n 258 304
Positive hCG, n (%) 37 (28.7) 45 (29.6) NS
Clinical pregnancy, n (%) 27 (20.9) 40 (26.3) NS
GS, n 27 49
Implantation rate, % 10.4 16.1 NS
Multiple pregnancies, n (%) 0 (0.0) 9 (22.5) 0.006
Miscarriage, n (%) 4 (14.8) 9 (22.5) NS
[1] Salha O.H., Lamb V.K., Balen A.H.: “A postal survey of embryo transfer practice in the UK”. Hum. Reprod., 2001, 16, 686.
[2] van Weering H.G., Schats R., McDonnell J., Vink J.M., Vermeiden J.P., Hompes P.G.: “The impact of the embryo transfer catheter on the pregnancy rate in IVF”. Hum. Reprod., 2002, 17, 666.
doi: 10.1093/humrep/17.3.666 pmid: 11870120
[3] Berin I., McLellan S.T., Macklin E.A., Toth T.L., Wright D.L.: “Frozen-thawed embryo transfer cycles: clinical outcomes of single and double blastocyst transfers”. J. Assist. Reprod. Genet., 2011, 28, 575.
doi: 10.1007/s10815-011-9551-7 pmid: 21373800
[4] Kang S.M., Lee S.W., Yoon S.H., Kim J.C., Lim J.H., Lee S.G.:“Comparison of clinical outcomes between single and double vitrified-warmed blastocyst embryo transfer according to the day of vitrification”. J. Assist. Reprod. Genet., 2013, 30, 779.
doi: 10.1007/s10815-013-0017-y pmid: 23715875
[5] McLernon D.J., Harrild K., Bergh C., Davies M.J., de Neubourg D., Dumoulin J.C., et al.: “Clinical effectiveness of elective single versus double embryo transfer: meta-analysis of individual patient data from randomised trials”. BMJ, 2010, 341, c6945.
doi: 10.1136/bmj.c6945 pmid: 21177530
[6] Dey S.K., Lim H., Das S.K., Reese J., Paria B.C., Daikoku T., Wang H.:“Molecular cues to implantation”. Endocrinol. Rev., 2004, 25, 341.
doi: 10.1210/er.2003-0020
[7] Chen J.R., Cheng J.G., Shatzer T., Sewell L., Hernandez L., Stewart C.L.:“Leukemia inhibitory factor can substitute for nidatory estrogen and is essential to inducing a receptive uterus for implantation but is not essential for subsequent embryogenesis”. Endocrinology, 2000, 141, 4365.
doi: 10.1210/endo.141.12.7855 pmid: 11108244
[8] Tazuke S.I., Giudice L.C.:“Growth factors and cytokines in endometrium, embryonic development, and maternal: embryonic interactions”. Semin. Reprod. Endocrinol., 1996, 14, 231.
doi: 10.1055/s-2007-1016333 pmid: 8885054
[9] Miró F., Vidal E., Balasch J.: “Increased live birth rate in twin pregnancies resulting from embryo assistance”. Obstet. Gynecol., 2012, 119, 44.
doi: 10.1097/AOG.0b013e31823bf978
[10] Barr M.Jr., Jensh R.P., Brent R.L.:“Placental growth in the albino rat: effects of number, intrauterine position and resorptions. Am. J. Anat., 1970, 128, 413.
[11] Nakagawa K., Takahashi C., Nishi Y., Jyuen H., Sugiyama R., Kuribayashi Y.: “Hyaluronan-enriched transfer medium improves outcome in patients with multiple embryo transfer failures”. J. Assist. Reprod. Genet., 2012, 29, 679.
doi: 10.1007/s10815-012-9758-2 pmid: 22527894
[12] Sugiyama R., Nakagawa K., Shirai A., Nishi Y., Kuribayashi Y., Inoue M.: “Clinical outcomes resulting from the transfer of vitrified human embryos using a new device for cryopreservation (plastic blade)”. J. Assist. Reprod. Genet., 2010, 27, 161.
doi: 10.1007/s10815-010-9390-y pmid: 20127161
[13] Veeck L.L.: “Atlas of the Human Oocyte and Early Conceptus”. Vol. 2. Baltimore: Williams & Wilkins Co., 1991.
[14] Goto S., Kadowaki T., Hashimoto H., Kokeguchi S., Shiotani M.: “Stimulation of endometrium embryo transfer (SEET): injection of embryo culture supernatant into the uterine cavity before blastocyst transfer can improve implantation and pregnancy rates”. Fertil. Steril., 2007, 88, 1339.
doi: 10.1016/j.fertnstert.2007.01.011
[15] Paria B.C., Lim H., Das S.K., Reese J., Dey S.K.:“Molecular signaling in uterine receptivity for implantation”. Semin. Cell. Dev. Biol., 2000, 11, 67.
doi: 10.1006/scdb.2000.0153 pmid: 10873704
[16] Krampl E., Zegermacher G., Eichler C., Obruca A., Strohmer H., Feichtinger W.: “Air in the uterine cavity after embryo transfer”. Fertil. Steril., 1995, 63, 366.
doi: 10.1016/s0015-0282(16)57370-1 pmid: 7843445
[17] Baba K., Ishihara O., Hayashi N., Saitoh M., Taya J., Kinoshita K.: “Where does the embryo implant after embryo transfer in humans?” Fertil. Steril., 2000, 73, 123.
doi: 10.1016/s0015-0282(99)00454-9 pmid: 10632425
[18] Kaser D.J., Missmer S.A., Correia K.F., Ceyhan S.T., Hornstein M.D., Racowsky C.: “Predictors of twin live birth following cryopreserved double embryo transfer on day 3”. J. Assist. Reprod. Genet., 2013, 30, 1023.
doi: 10.1007/s10815-013-0039-5 pmid: 23824746
[19] El-Danasouri I., Sterzik K., Rinaldi L., Pacchiarotti A., DeSanto M., Selman H.: “Effect of transferring a morphologically impaired embryo with a good quality embryo on the pregnancy and implantation rates”. Eur. Rev. Med. Pharmacol. Sci., 2016, 20, 394.
pmid: 26914111
[20] Wintner E.M., Hershko-Klement A., Tzadikevitch K., Ghetler Y., Gonen O., Wintner O. et al.: “Does the transfer of a poor quality embryo together with a good quality embryo affect the in vitro fertilization (IVF) outcome?” J. Ovarian Res., 2017, 10, 2.
doi: 10.1186/s13048-016-0297-9 pmid: 28086935
[21] Yang Z., Liu J., Collins G.S., Salem S.A., Liu X., Lyle S.S. et al.: “Selection of single blastocysts for fresh transfer via standard morphology assessment alone and with array CGH for good prognosis IVF patients: results from a randomized pilot study”. Mol Cytogenet 2012, 5, 24.
doi: 10.1186/1755-8166-5-24 pmid: 22551456
[22] Teklenburg G., Salker M., Molokhia M., Lavery S., Trew G., Aojanepong T., et al.: “Natural selection of human embryos: decidualizing endometrial stromal cells serve as sensors of embryo quality upon implantation”. PLoS One, 2010, 5, e10258.
doi: 10.1371/journal.pone.0010258 pmid: 20422011
[23] Blake D.A., Farquhar C.M., Johnson N., Proctor M., : “Cleavage stage versus blastocyst stage embryo transfer in assisted conception”. Cochrane Database Syst. Rev., 2007, 4, CD002118.
[24] Scotland G.S., McLernon D., Kurinczuk J.J., McNamee P., Harrild K., Lyall H., et al.: “Minimising twins in in vitro fertilisation: a modelling study assessing the costs, consequences and cost-utility of elective single versus double embryo transfer over a 20-year time horizon”. BJOG, 2011, 118, 1073.
doi: 10.1111/j.1471-0528.2011.02966.x pmid: 21477172
[1] Ali S. Alqahtani. Seroprevalence of Dengue virus among pregnant mothers and their-newborn infants in the southwest of Saudi Arabia[J]. Clinical and Experimental Obstetrics & Gynecology, 2020, 47(5): 741-743.
[2] M. Elmahdy, I. Elfourtia, H. Maghraby. Office hysteroscopy in cases of recurrent implantation failure; Do or not to do[J]. Clinical and Experimental Obstetrics & Gynecology, 2020, 47(5): 723-728.
[3] L.L. Xu, J.Q. Li, Y.Q. Pu, C. Zhou, S.W. Feng, Q. Luo. Effect of prenatal depression during late pregnancy on maternal and neonatal outcomes[J]. Clinical and Experimental Obstetrics & Gynecology, 2020, 47(5): 681-686.
[4] Y.X. Wang, M. Zhong, H. Yi, H.F. He. Detection of group B streptococcus colonization in cervical and lower vaginal secretions of pregnant women[J]. Clinical and Experimental Obstetrics & Gynecology, 2020, 47(5): 669-674.
[5] I.F. Urunsak, U.K. Gulec, E. Eser, M. Sucu, C. Akcabay, S. Buyukkurt. The role of dinoprostone for labor induction in postterm and high-risk term pregnancies[J]. Clinical and Experimental Obstetrics & Gynecology, 2020, 47(5): 664-668.
[6] S. Han, S. Choi, S. Nah, Y.H. Lee. Preterm labor in mild carbon monoxide poisoning: a case report[J]. Clinical and Experimental Obstetrics & Gynecology, 2020, 47(5): 805-806.
[7] H.S.O. Abduljabbar, H. Abduljabar. A systematic review and meta-analysis of the reported symptoms of Covid 19 in pregnancy[J]. Clinical and Experimental Obstetrics & Gynecology, 2020, 47(5): 632-637.
[8] M. Varras, C. Loukas, N. Nikiteas, V.K. Varra, F.N. Varra, E. Georgiou. Comparison of laparoscopic surgical skills acquired on a virtual reality simulator and a box trainer: an analysis for obstetrics-gynecology residents[J]. Clinical and Experimental Obstetrics & Gynecology, 2020, 47(5): 755-763.
[9] Sh. Gaafar, T. Hanafy, S. El Morshedy, H. Mansour. Effect of extended embryo culture after thawing on clinical pregnancy rate[J]. Clinical and Experimental Obstetrics & Gynecology, 2020, 47(5): 764-768.
[10] H. Yolli, M.E. Demir, R. Yildizhan. Neutrophil gelatinase associated lipocalin-2 (Ngal) levels in preeclampsia[J]. Clinical and Experimental Obstetrics & Gynecology, 2020, 47(4): 519-523.
[11] K. Chikazawa, K. Imai, T. Kuwata, K. Takagi. Prophylactic laparoscopic adnexal surgery with low-pressure CO2 insufflation for ovarian cysts during the late first trimester or second trimester of pregnancy[J]. Clinical and Experimental Obstetrics & Gynecology, 2020, 47(4): 537-540.
[12] J. A. Villarreal-Rodriguez, L. G. Mancillas Adame, J. Maldonado-Sanchez, A. Guzmán-López, O. R. Treviño-Montemayor, J. G. Gonzalez-Gonzalez, D. Saldívar-Rodríguez. A randomized controlled trial comparing acarbose vs. insulin therapy for gestational diabetes in individuals with inadequate glycemic control by diet alone[J]. Clinical and Experimental Obstetrics & Gynecology, 2020, 47(4): 552-555.
[13] J. Ogawa, S. Suzuki. Risk factors of self-interruption of medications for mental disorders in pregnancy[J]. Clinical and Experimental Obstetrics & Gynecology, 2020, 47(4): 576-578.
[14] A. Daniilidis, G. Dryllis, G. Chorozoglou, M. Politou, R. Dampali, K. Dinas. Substitution of hemoglobin levels in pregnant women with iron supplement: A prospective randomized clinical study[J]. Clinical and Experimental Obstetrics & Gynecology, 2020, 47(4): 579-583.
[15] Z.Y. Chang, R. Cao, R.C. Xu, Y. Cheng, Q.J. Wan. Pregnancy in a peritoneal dialysis patient undergoing intermittent peritoneal dialysis during the third trimester of pregnancy: a case report and literature review[J]. Clinical and Experimental Obstetrics & Gynecology, 2020, 47(4): 596-599.
No Suggested Reading articles found!