Please wait a minute...
Clinical and Experimental Obstetrics & Gynecology  2020, Vol. 47 Issue (1): 27-30    DOI: 10.31083/j.ceog.2020.01.4960
Original Research Previous articles | Next articles
Which is the safer method for trophectoderm biopsy in mouse blastocyst, mechanical or laser?
M.S. Jo1, H.J. Lee1, Y.J. Lee1, S.C. Kim1, J.K. Joo1, *(), K.S. Lee1
1Department of Obstetrics and Gynecology, Pusan National University School of Medicine; Biomedical Research Institute, Pusan National University Hospital, Busan, Korea
Download:  PDF(1884KB)  ( 168 ) Full text   ( 9 )
Export:  BibTeX | EndNote (RIS)      
Abstract  

Introduction: This study was conducted to compare hatching rates after assisted hatching, re-expansion rates after trophectoderm biopsy, and survival rates after cryopreservation using different methods of assisted hatching and biopsy in mouse embryo. Materials and Methods: Five-week-old female mice (C57BL/CBA) were superovulated, and two-cell embryos were collected. All embryos were cultured to blastocyst stage. For assisted hatching and separating trophectoderm from blastocyst, laser device and hand-made pipette were used respectively. Hatching rates after assisted hatching, re-expansion rates after trophectoderm biopsy, and survival rates after cryopreservation were calculated. Results: Hatching rate was 92% in mechanically assisted hatching group and 90% in laser group, respectively. After mechanically assisted hatching, re-expansion rate was 91.3% and survival rate was 87% in biopsy by pipette and laser group, respectively. In laser hatching group, re-expansion rate was 88.9% with biopsy by pipette and survival rate was 84.4% with biopsy by laser. Conclusion: Throughout the study, mechanical technique and laser technique showed no differences in the safety profiles in trophectoderm biopsy procedure.

Key words:  Trophectoderm      Preimplantation genetic diagnosis      IVF      Laser     
Published:  15 February 2020     
*Corresponding Author(s):  J.K. Joo     E-mail:  jongkilj@hanmail.net

Cite this article: 

M.S. Jo, H.J. Lee, Y.J. Lee, S.C. Kim, J.K. Joo, K.S. Lee. Which is the safer method for trophectoderm biopsy in mouse blastocyst, mechanical or laser?. Clinical and Experimental Obstetrics & Gynecology, 2020, 47(1): 27-30.

URL: 

https://ceog.imrpress.com/EN/10.31083/j.ceog.2020.01.4960     OR     https://ceog.imrpress.com/EN/Y2020/V47/I1/27

Figure 1.  — Overview of study.

Figure 2.  — Assisted hatching and trophectoderm biopsy by mechanical method. A) Hatching pipette insertion in the perivitelline space. B) Penetration of opposite zona pellucida. C) Rubbing zona pellucida with assisted hatching pipette and holding pipette. D) Cells are drawn into the biopsy pipette. E) Splitting of the trophectoderm with holding and biopsy pipette. F) Biopsied blastocyst and biopsy sample in biopsy pipette.

Figure 3.  — Assisted hatching and trophectoderm biopsy by laser device. A) Assisted hatched mouse blastocysts by laser (arrow; thinning area by laser). B) Expanding blastocyst with trophectoderm herniating through an opening of the zona pellucida made by laser. C) and D) A cluster of trophectoderm cells split by laser.

Table 1  — Comparison of hatching rates, re-expansion rates, and survival rates of mouse blastocysts after assisted hatching and trophectoderm biopsy with hand-made pipette and laser respectively.
Hatching rate (%) Re-expansion rate (%) Survival rate (%)
AHP
(n=100)
92 (92) BXP
(n=46)
42 (91.3) 40 (87.0)
BXL
(n=46)
40 (87.0) 40 (87.0)
AHL
(n=100)
90 (90) BXP
(n=45)
40 (88.9) 39 (86.7)
BXL
(n=45)
41 (91.1) 38 (84.4)
p-value 0.806 0.947 0.955
[1] Munne S., Lee A., Rosenwaks Z., Grifo J., Cohen J.: “Diagnosis of major chromosome aneuploidies in human preimplantation embryos”. Hum. Reprod., 1993, 8, 2185.
[2] Mastenbroek S., Twisk M., van der Veen F., Repping S.: “Preimplantation genetic screening: a systematic review and meta-analysis of RCTs”. Hum. Reprod. Update., 2011, 17, 454.
[3] Geraedts J.P.: “Does additional hybridization also improve preimplantation genetic screening results?”. Expert Rev. Mol. Diagn., 2010, 10, 981.
[4] Capalbo A., Rienzi L., Buccheri M., Maggiulli R., Sapienza F., Romano S., et al.: “The worldwide frozen embryo reservoir: methodologies to achieve optimal results”. Ann. N. Y. Acad. Sci., 2011, 1221, 32.
[5] McArthur S.J., Leigh D., Marshall J.T., de Boer K.A., Jansen R.P.: “Pregnancies and live births after trophectoderm biopsy and preimplantation genetic testing of human blastocysts”. Fertil. Steril., 2005, 84, 1628.
[6] Schoolcraft W.B., Fragouli E., Stevens J., Munne S., Katz-Jaffe M.G., Wells D.: “Clinical application of comprehensive chromosomal screening at the blastocyst stage”. Fertil. Steril., 2010, 94, 1700.
[7] Capalbo A., Bono S., Spizzichino L., Biricik A., Baldi M., Colamaria S., et al.: “Sequential comprehensive chromosome analysis on polar bodies, blastomeres and trophoblast: insights into female meiotic errors and chromosomal segregation in the preimplantation window of embryo development”. Hum. Reprod., 2013, 28, 509.
[8] Forman E.J., Tao X., Ferry K.M., Taylor D., Treff N.R., Scott R.T., Jr .: “Single embryo transfer with comprehensive chromosome screening results in improved ongoing pregnancy rates and decreased miscarriage rates”. Hum. Reprod., 2012, 27, 1217.
[9] van Echten-Arends J., Mastenbroek S., Sikkema-Raddatz B., Korevaar J.C., Heineman M.J., van der Veen F., et al.: “Chromosomal mosaicism in human preimplantation embryos: a systematic review”. Hum. Reprod. Update, 2011, 17, 620.
[10] Hardy K., Martin K.L., Leese H.J., Winston R.M., Handyside A.H.: “Human preimplantation development in vitro is not adversely affected by biopsy at the 8-cell stage”. Hum. Reprod., 1990, 5, 708.
[11] Tan Y.Q., Tan K., Zhang S.P., Gong F., Cheng D.H., Xiong B., et al.: “Single-nucleotide polymorphism microarray-based preimplantation genetic diagnosis is likely to improve the clinical outcome for translocation carriers”. Hum. Reprod., 2013, 28, 2581.
[12] Scott R.T., Upham K.M., Forman E.J., Zhao T., Treff N.R.: “Cleavage-stage biopsy significantly impairs human embryonic implantation potential while blastocyst biopsy does not: a randomized and paired clinical trial”. Fertil. Steril., 2013, 100, 624.
[13] Yang Z., Liu J., Collins G.S., Salem S.A., Liu X., Lyle S.S., et al.: “Selection of single blastocysts for fresh transfer via standard morphology assessment alone and with array CGH for good prognosis IVF patients: results from a randomized pilot study”. Mol. Cytogenet., 2012, 5, 24.
[14] Forman E.J., Upham K.M., Cheng M., Zhao T., Hong K.H., Treff N.R., et al.: “Comprehensive chromosome screening alters traditional morphology-based embryo selection: a prospective study of 100 consecutive cycles of planned fresh euploid blastocyst transfer”. Fertil. Steril., 2013, 100, 718.
[15] Schoolcraft W.B., Katz-Jaffe M.G.: “Comprehensive chromosome screening of trophectoderm with vitrification facilitates elective single-embryo transfer for infertile women with advanced maternal age”. Fertil. Steril., 2013, 100, 615.
[16] Liu J., Wang W., Sun X., Liu L., Jin H., Li M., et al.: “DNA microarray reveals that high proportions of human blastocysts from women of advanced maternal age are aneuploid and mosaic”. Biol. Reprod., 2012, 87, 148.
[17] Novik V., Moulton E.B., Sisson M.E., Shrestha S.L., Tran K.D., Stern H.J., et al.: “The accuracy of chromosomal microarray testing for identification of embryonic mosaicism in human blastocysts”. Mol. Cytogenet., 2014, 7, 18.
[18] Zakharchenko E.O., Zalessky A.D., Osychenko A.A., Krivokharchenko A.S., Shakhbazyan A.K., Ryabova A.V., et al.: “Effect of laser optoperforation of the zona pellucida on mouse embryo development in vitro”. Biochemistry (Mosc.), 2015, 80, 769.
[1] Z. Merhi, J. Zhang. At-Home IVF Kit: application during the COVID-19 pandemic[J]. Clinical and Experimental Obstetrics & Gynecology, 2020, 47(5): 653-659.
[2] C. Chan, J.W. Wang, C.W. Wang, C.W. Chang. A pitfall in ultrasonographic diagnosis–heterotopic cornual pregnancy initially misdiagnosed as leiomyoma[J]. Clinical and Experimental Obstetrics & Gynecology, 2020, 47(2): 296-298.
[3] Y. J. Lee, S. C. Kim, J. K. Joo, H. G. Kim, G. R. Ko, C. W. Kim, K. S. Lee. Is laser-assisted hatching better than mechanical method for enhancing pregnancy rate in frozen-thawed blastocyst transfer cycles?[J]. Clinical and Experimental Obstetrics & Gynecology, 2020, 47(1): 65-69.
[4] P. Bakas, M. Simopoulou, P. Panagopoulos, N. Salakos, Ch. Siristatidis. Luteal phase progesterone and estradiol concentrations and their relation to the outcome of IVF/ICSI cycles with controlled ovarian stimulation[J]. Clinical and Experimental Obstetrics & Gynecology, 2019, 46(5): 727-730.
[5] B. Luo, L. Luo. Simultaneous cornual heterotopic and intrauterine pregnancy following in vitro fertilization/embryo transfer: new conservative surgery with laparoscopic lesion resection[J]. Clinical and Experimental Obstetrics & Gynecology, 2019, 46(3): 482-484.
[6] M.C. Teodoro, G. Scibilia, E. Lomeo, B. Pecorino, A. Galia, P. Scollo. Carbon dioxide laser as a new valid treatment of lichen sclerosus[J]. Clinical and Experimental Obstetrics & Gynecology, 2019, 46(2): 206-210.
[7] J.-K. Joo, J.-E. Jeong, H.-G. Kim, S.-C. Kim, C.-W. Kim, K.-S. Lee. Effect of laser-assisted three area zona thinning at the 8-cell embryo on the hatching of mouse blastocysts[J]. Clinical and Experimental Obstetrics & Gynecology, 2019, 46(2): 231-234.
[8] A.A. Reginaldo de Holanda, A.K. Gonçalves, H.H. Carrara, T.M. de Oliveira Maranhão. Breast changes in pregnancy and lactation observed by ultrasonography[J]. Clinical and Experimental Obstetrics & Gynecology, 2019, 46(1): 7-11.
[9] Chunjuan Shen, Liping Wang, Xiaojie Wu, Shuhui Mao, Chunxia Fang. The relationship between vitamin D and IVF: a systematic review and meta-analysis[J]. Clinical and Experimental Obstetrics & Gynecology, 2019, 46(1): 12-15.
[10] M.B. Celtemen, P. Telli Celtemen, N. Bozkurt, C. Karakaya, S. Elberg, R.H. Gursoy. Follicular fluid anti-Müllerian hormone, inhibin-A, progesterone, and estradiol level differences in patients under controlled ovarian stimulation[J]. Clinical and Experimental Obstetrics & Gynecology, 2018, 45(2): 166-169.
[11] Bo Ma, Yuhu Li, Xiulan Zhang, Liuguang Zhang, Ning Li, Ping Yu. Supplementation of IVF solutions with melatonin improves assisted reproductive technology results[J]. Clinical and Experimental Obstetrics & Gynecology, 2018, 45(2): 209-213.
[12] P. Bakas, M. Creatsa, P. Panagopoulos, N. Vlahos, E. Papadakis, M. Simopoulou. Outcome and recurrence risk of premature progesterone rise in IVF/ICSI cycles using GnRH antagonists for pituitary down-regulation[J]. Clinical and Experimental Obstetrics & Gynecology, 2018, 45(1): 44-47.
[13] A.J. Jakimiuk, M.A. Nowicka, M. Zagozda, K. Koziol, P. Lewandowski, T. Issat. Levels of EG-VEGF and VEGF in serum and in the follicular fluid on the day of oocyte retrieval and reproductive outcome among IVF patients[J]. Clinical and Experimental Obstetrics & Gynecology, 2018, 45(1): 93-97.
[14] P. Telli Celtemen, N. Bozkurt, M. Erdem, M.B. Celtemen, A. Erdem, M. Öktem, R.O. Karabacak. What is the best initial cycle IVF protocol for patients over 35 years old?[J]. Clinical and Experimental Obstetrics & Gynecology, 2017, 44(5): 721-725.
[15] B. Bechev, M. Konovalova. A very rare case of ectopic intramural pregnancy after IVF-ET[J]. Clinical and Experimental Obstetrics & Gynecology, 2017, 44(5): 802-803.
No Suggested Reading articles found!